SOLUTION MANUAL ENGLISH UNIT PROBLEMS CHAPTER 15

CHAPTER 15

CONTENT CHAPTER 15

SUBSECTION

PROB NO.

Correspondence table	
Equilibrium	89
Chemical equilibrium, Equilibrium Constant	90-99
Simultaneous Reactions	100-103
Review problems	104-106

New	5th	SI	New	5th	SI	New	5th	SI
89	53	21	95	62	45	101	67	71
90	new	25	96	63	54	102	68	72
91	58	31	97	64	58	103	69	73
92	59	36	98	new	59	104	70	88
93	60	37	99	new	63	105	71	80
94	61	39	100	65	68	106	72	87

Equilibrium

15.89<mark>E</mark>

Carbon dioxide at 2200 lbf/in.² is injected into the top of a 3-mi deep well in connection with an enhanced oil recovery process. The fluid column standing in the well is at a uniform temperature of 100 F. What is the pressure at the bottom of the well assuming ideal gas behavior?

$$Z_{1} = \begin{bmatrix} & 1 \\ & CO_{2} \\ & & 2 \end{bmatrix}$$

$$(Z_{1}-Z_{2}) = 3 \text{ miles} = 15 840 \text{ ft}$$

$$P_{1} = 2200 \text{ lbf/in}^{2}, T = 100 \text{ F} = \text{const}$$
Equilibrium and ideal gas beahvior

$$-w_{\text{REV}} = 0 = \Delta g + \Delta PE = \text{RT} \ln (P_{2}/P_{1}) + g(Z_{2}-Z_{1}) = 0$$

$$\ln (P_{2}/P_{1}) = \frac{32.2 \times 15 840}{32.2 \times 35.1 \times 559.7} = 0.8063$$

$$P_{2} = 2200 \exp(0.8063) = 4927 \text{ lbf/in}^{2}$$

Chemical equilibrium, Equilibrium Constant

15.90**E**

Calculate the equilibrium constant for the reaction $O_2 \iff 2O$ at temperatures of 537 R and 10 000 R.

Find the change in Gibbs function at the two T's from Table F.6:

537 R:
$$\Delta H^0 = 2\bar{h}_{fO}^0 - 1\bar{h}_{fO2}^0 = 2 \times 107\ 124 = 214\ 248\ Btu/lbmol;$$

 $\Delta S^0 = 2\bar{s}_O^0 - 1\bar{s}_{O2}^0 = 2 \times 38.442 - 48.973 = 27.911\ Btu/lbmol\ R$
 $\Delta G^0 = \Delta H^0 - T\Delta S^0 = 214\ 248 - 537 \times 27.911 = 199\ 260\ Btu/lbmol$
 $\ln K = -\frac{\Delta G^0}{\bar{R}T} = -\frac{+199\ 260}{1.98589 \times 537} = -185.85$

10 000 R:
$$\Delta H^0 = 2\bar{h}_{f\,O}^0 - 1\bar{h}_{f\,O2}^0 = 2 (107\ 124 + 47\ 897) - 87\ 997$$

= 222 045 Btu/lbmol;
 $\Delta S^0 = 2\bar{s}_O^0 - 1\bar{s}_{O2}^0 = 2 \times 53.210 - 74.034 = 32.386$ Btu/lbmol R
 $\Delta G^0 = \Delta H^0 - T\Delta S^0 = 222\ 045 - 10\ 000 \times 32.386 = -101\ 815$
ln K = $-\Delta G^0/RT = 101\ 815 / (1.98589 \times 10\ 000) = +5.127$

15.91<mark>E</mark>

Pure oxygen is heated from 77 F to 5300 F in a steady flow process at a constant pressure of 30 lbf/in.². Find the exit composition and the heat transfer.

The only reaction will be the dissociation of the oxygen

$$O_2 \Leftrightarrow 2O$$
; $K(5300 \text{ F}) = K(3200 \text{ K}) = 0.046467$

Look at initially 1 mol Oxygen and shift the above reaction with x

$$n_{O2} = 1 - x; \quad n_O = 2x; \quad n_{tot} = 1 + x; \quad y_i = n_i/n_{tot}$$

$$K = \frac{y_O^2}{y_{02}} (\frac{P}{P_o})^{2-1} = \frac{4x^2}{(1+x)^2} \frac{1+x}{1-x} 2 = \frac{8x^2}{1-x^2}$$

$$x^2 = \frac{K/8}{1+K/8} \Rightarrow x = 0.07599; \quad y_{02} = 0.859; \quad y_0 = 0.141$$

$$\bar{q} = n_{02ex}\bar{h}_{02ex} + n_{0ex}\bar{h}_{Oex} - \bar{h}_{02in} = (1+x)(y_{02}\bar{h}_{02} + y_0\bar{h}_O) - 0$$

$$\bar{h}_{02} = 45 \ 581; \quad \bar{h}_O = 107124 + 26125 = 133 \ 249$$

$$\bar{q} = 1.076(0.859 \times 45581 + 0.141 \times 133249) = 62345 \ Btu/lbmol \ O_2$$

$$q = \bar{q}/32 = 1948 \ Btu/lbm \ (=1424 \ if no \ dissociation)$$

15.92E

Air (assumed to be 79% nitrogen and 21% oxygen) is heated in a steady flow process at a constant pressure of 14.7 lbf/in.², and some NO is formed. At what temperature will the mole fraction of NO be 0.001?

$$0.79N_{2} + 0.21O_{2} \text{ heated at } 14.7 \text{ lbf/in}^{2}, \text{ forms NO}$$
At exit, $y_{NO} = 0.001$

$$N_{2} + O_{2} \Leftrightarrow 2 \text{ NO} \qquad n_{N2} = 0.79 - x$$

$$-x -x + 2x \qquad n_{O2} = 0.21 - x$$

$$\frac{n_{NO} = 0}{n} + 2x$$

$$n = 1.0$$

$$y_{NO} = 0.001 = \frac{2x}{1.0} \Rightarrow x = 0.0005 \Rightarrow n_{N2} = 0.7895, n_{O2} = 0.2095$$

$$K = \frac{y_{NO}^{2}}{y_{N2}y_{O2}} \left(\frac{P}{P^{0}}\right)^{0} = \frac{10^{-6}}{0.7895 \times 0.2095} = 6.046 \times 10^{-6} \text{ or } \ln K = -12.016$$
Even Table A 11 = T = 1444 K = 2600 \text{ P}

From Table A.11, T = 1444 K = 2600 R

15.93E

The combustion products from burning pentane, C_5H_{12} , with pure oxygen in a stoichiometric ratio exists at 4400 R. Consider the dissociation of only CO₂ and find the equilibrium mole fraction of CO.

$$\mathrm{C_5H_{12}+8~O_2} \rightarrow 5~\mathrm{CO_2+6~H_2O}$$

At 4400 R,	$2 \operatorname{CO}_2 \Leftrightarrow 2 \operatorname{CO} + 1 \operatorname{O}_2$				
$\ln K = -7.226$	Initial 5	0	0		
$K = 7.272 \times 10^{-4}$	Change	-2z	+2z	$+_{\mathbf{Z}}$	
	Equil. 5-2z	2z	Z		

Assuming $P = P^o = 0.1$ MPa,

K =
$$\frac{y_{CO}^2 y_{O_2}}{y_{CO_2}^2} (\frac{P}{P^0}) = (\frac{2z}{5-2z})^2 (\frac{z}{5+z})(1) = 7.272 \times 10^{-4};$$

Trial & error on z: z = 0.2673 $n_{CO_2} = 4.4654; n_{CO} = 0.5346; n_{O_2} = 0.2673$ $y_{CO} = 0.1015$

15.94<mark>E</mark>

Pure oxygen is heated from 77 F, 14.7 lbf/in.² to 5300 F in a constant volume container. Find the final pressure, composition, and the heat transfer

As oxygen is heated it dissociates

$$\begin{split} O_{2} \Leftrightarrow 20 & \ln K_{eq} = -3.069 \\ C. V. Heater: & U_{2} - U_{1} = {}_{1}Q_{2} = H_{2} - H_{1} - P_{2}v + P_{1}v \\ Per mole O_{2}: & {}_{1}\bar{q}_{2} = \bar{h}_{2} - \bar{h}_{1} + \bar{R}(T_{1} - (n_{2}/n_{1})T_{2}) \\ Shift x in reaction final composition: & (1 - x)O_{2} + 2xO \\ & n_{1} = 1 & n_{2} = 1 - x + 2x = 1 + x \\ & y_{O2} = (1 - x)/(1 + x); & y_{O} = 2x/(1 + x) \\ Ideal gas and V_{2} = V_{1} \Rightarrow P_{2} = P_{1}n_{2}T_{2}/n_{1}T_{1} \Rightarrow P_{2}/P_{o} = (1 + x)T_{2}/T_{1} \\ Substitute the molefractions and the pressure into the equilibrium equation \\ & K_{eq} = e^{-3.069} = \frac{y_{O}^{2}}{y_{O2}}(\frac{P_{2}}{P_{o}}) = (\frac{2x}{1 + x})^{2}(\frac{1 + x}{1 - x})(\frac{1 + x}{1})(\frac{T_{2}}{T_{1}}) \\ & \Rightarrow \frac{4x^{2}}{1 - x} = \frac{T_{1}}{T_{2}}e^{-3.069} = 0.00433 \Rightarrow x = 0.0324 \\ (n_{O2})_{2} = 0.9676, & (n_{O})_{2} = 0.0648, & n_{2} = 1.0324 \\ & 1\bar{q}_{2} = 0.9676(45 581) + 0.0648(107 124 + 26 125) - \emptyset \\ & + 1.98589(536.67 - 1.0324 \times 5760) = 41 996 Btu/lbmol O_{2} \\ & y_{O2} = 0.9676 / 1.0324 = 0.937; & y_{O} = 0.0648/1.0324 = 0.0628 \end{split}$$

15.95<mark></mark>€

The equilibrium reaction with methane as $CH_4 \Leftrightarrow C + 2H_2$ has $\ln K = -0.3362$ at 1440 R and $\ln K = -4.607$ at 1080 R. By noting the relation of K to temperature, show how you would interpolate $\ln K$ in (1/T) to find K at 1260 R and compare that to a linear interpolation.

$$\ln K = -0.3362 \text{ at } 1440 \text{ R} \qquad \ln K = -4.607 \text{ at } 1080 \text{ R}$$
$$\ln K_{1260} = \ln K_{1440} + \frac{\frac{1}{1260} - \frac{1}{1440}}{\frac{1}{1080} - \frac{1}{1440}} \times (-4.607 + 0.3362)$$
$$= -0.3362 + \frac{\frac{1440}{1260} - 1}{\frac{1440}{1080} - 1} \times (-4.2708) = -2.1665$$

Linear interpolation:

$$\ln K_{1260} = \ln K_{1080} + \frac{1260 - 1080}{1440 - 1080} (\ln K_{1440} - \ln K_{1080})$$
$$= -4.607 + \frac{1}{2} (-0.3362 + 4.607) = -2.4716$$

15.96<mark>E</mark>

A gas mixture of 1 pound mol carbon monoxide, 1 pound mol nitrogen, and 1 pound mol oxygen at 77 F, 20 lbf/in.², is heated in a constant pressure steady flow process. The exit mixture can be assumed to be in chemical equilibrium with CO_2 , CO, O_2 , and N_2 present. The mole fraction of CO_2 at this point is 0.176. Calculate the heat transfer for the process.

$$y_{CO2} = 0.176 = \frac{2x}{3-x} \implies x = 0.242\ 65$$

$$n_{CO2} = 0.4853 \quad n_{O2} = 0.757\ 35$$

$$n_{CO} = 0.5147 \quad n_{N2} = 1$$

$$\begin{cases} y_{CO2} = 0.176 \\ y_{CO2} = 0.186\ 67 \\ y_{O2} = 0.274\ 67 \end{cases}$$

$$K = \frac{y_{CO}^2 y_{O2}}{y_{CO2}^2} \left(\frac{P}{P^0}\right)^1 = \frac{0.186\ 67^2 \times 0.274\ 67}{0.176^2} \left(\frac{20}{14.504}\right) = 0.426\ 07$$

Since Table A.11 corresponds to a pressure P_0 of 100 kPa, which is 14.504 lbf/in². Then, from A.11, $T_{PROD} = 3200 \text{ K} = 5760 \text{ R}$

$$\begin{split} H_{R} &= -47\ 518\ \text{Btu} \\ H_{P} &= 0.4853(-169\ 184 + 71\ 075) + 0.5147(-47\ 518 + 43\ 406) \\ &\quad + 0.757\ 35(0 + 45\ 581) + 1(0 + 43\ 050) = +27\ 842\ \text{Btu} \\ Q_{CV} &= H_{P} - H_{R} = 27\ 842\ \text{-}\ (-47\ 518) = +75\ 360\ \text{Btu} \end{split}$$

15.97<mark>E</mark>

Use the information in problem 15.95E to estimate the enthalpy of reaction, ΔH^{0} , at 1260 R using the van't Hoff equation (see problem 15.48) with finite differences for the derivatives.

$$dlnK = [\Delta H^{\circ}/\bar{R}T^{2}]dT \text{ or solve for }\Delta H^{\circ}$$
$$\Delta H^{\circ} = \bar{R}T^{2}\frac{dlnK}{dT} = \bar{R}T^{2}\frac{\Delta lnK}{\Delta T}$$
$$= 1.98589 \times 1260^{2} \times \frac{-0.3362 + 4.607}{1440 - 1080} = 37403 \text{ Btu/lb mol}$$
[Remark: compare this to F.6 values + F.4, F.11,

$$\Delta H^{\circ} = H_{C} + 2H_{H_{2}} - H_{CH_{4}} = 0.146 \times 12 \times (1260-537) + 2 \times 5044$$
$$-0.538 \times 16.043 \times (1260-537) - (-32190) = 37304]$$

15.98<mark>E</mark>

Acetylene gas at 77 F is burned with 140% theoretical air, which enters the burner at 77 F, 14.7 lbf/in.², 80% relative humidity. The combustion products form a mixture of CO_2 , H_2O , N_2 , O_2 , and NO in chemical equilibrium at 3500 F, 14.7 lbf/in.². This mixture is then cooled to 1340 F very rapidly, so that the composition does not change. Determine the mole fraction of NO in the products and the heat transfer for the overall process.

 $C_2H_2 + 3.5 O_2 + 13.16 N_2 + water \rightarrow$ $2 \text{ CO}_2 + 1 \text{ H}_2\text{O} + 1 \text{ O}_2 + 13.16 \text{ N}_2 + \text{water}$ $P_{y} = 0.8 \times 0.46 = 0.368 \text{ lbf/in}^2$ Water: $n_V = n_A \times \frac{P_V}{P_A} = (3.5 + 13.16) \times \frac{0.368}{14.332} = 0.428$ So, total H₂O in products is : $1 + n_V = 1.428$. a) reaction: $N_2 + O_2 \Leftrightarrow 2 \text{ NO}$ change : -x -x +2xat 3500 F = 3960 R (=2200 K), from A.11: K = 0.001 074Equilibrium products: $n_{CO2} = 2$, $n_{H2O} = 1.428$, $n_{O2} = 1-x$, $n_{N2} = 13.16$ -x, $n_{NO} = 0+2x$, $n_{TOT} = 17.588$ $K = \frac{(2x)^2}{(1-x)(13,16-x)} = 0.001,074$ By trial and error, x = 0.0576 $y_{NO} = \frac{2 \times 0.0576}{17588} = 0.00655$ b) Final products (same composition) at 1340 F = 1800 R $H_{p} = 1(97\ 476) + 0.428(-103\ 966) = 52\ 979\ Btu$

 $H_{\rm R} = 1(97470) + 0.428(-103900) = 52979 \text{ Bu}$ $H_{\rm p} = 2(-169184 + 14358) + 1.428(-103966 + 11178)$ + 0.9424(0 + 9761) + 13.1024(0 + 9227) + 0.1152(38818 + 9557) = -306486 Btu $Q_{\rm CV} = H_{\rm p} - H_{\rm p} = -359465 \text{ Btu}$

У

0 8 5 9 1

15.99E

An important step in the manufacture of chemical fertilizer is the production of ammonia, according to the reaction: $N_2 + 3H_2 \Leftrightarrow 2NH_3$

- a. Calculate the equilibrium constant for this reaction at 300 F.
- b. For an initial composition of 25% nitrogen, 75% hydrogen, on a mole basis, calculate the equilibrium composition at 300 F, 750 lbf/in.².

$$1N_2 + 3H_2 \le 2NH_3$$
 at 300 F

- a) $\bar{h}_{NH3\ 300\ F}^{0} = -19\ 656 + 0.509 \times 17.031(300-77) = -17723$ $\bar{s}_{NH3\ 300\ F}^{0} = 45.969 + 0.509 \times 17.031\ \ln\frac{760}{537} = 48.980$ $\Delta H_{300\ F}^{0} = 2(-17723) - 1(0 + 1557) - 3(0 + 1552) = -41\ 659\ Btu$ $\Delta S_{300\ F}^{0} = 2(48.98) - 1(48.164) - 3(33.60) = -51.0\ Btu/R$ $\Delta G_{300\ F}^{0} = -41\ 659 - 760(-51.0) = -2899\ Btu$ $\ln K = \frac{+2899}{1\ 98589 \times 760} = 1.9208, \quad K = 6.826$
- b) $n_{NH3} = 2x$, $n_{N2} = 1-x$, $n_{H2} = 3-3x$ $K = \frac{y_{NH3}^2}{y_{N2}y_{H2}^3} \left(\frac{P}{P^0}\right)^{-2} = \frac{(2x)^2 2^2 (2-x)^2}{3^3 (1-x)^4} \left(\frac{P}{P^0}\right)^{-2}$ or $\left(\frac{x}{1-x}\right)^2 \left(\frac{2-x}{1-x}\right)^2 = \frac{27}{16} \times 6.826 \times \left(\frac{750}{14.7}\right)^2 = 29985$ or $\left(\frac{x}{1-x}\right) \left(\frac{2-x}{1-x}\right) = 173.16$ \rightarrow Trial & Error: NH_3 1.848

x = 0.

	1113	1.010	0.0571
.9242	N ₂	0.0758	0.0352
	H ₂	0.2273	0.1057

Simultaneous Reactions

15.100E

Ethane is burned with 150% theoretical air in a gas turbine combustor. The products exiting consist of a mixture of CO_2 , H_2O , O_2 , N_2 , and NO in chemical equilibrium at 2800 F, 150 lbf/in.². Determine the mole fraction of NO in the products. Is it reasonable to ignore CO in the products?

Combustion:

$$\rm C_2H_6 + 5.25\,O_2 + 19.74\,N_2 \rightarrow 2\,CO_2 + 3\,H_2O + 1.75\,O_2 + 19.74\,N_2$$

a) Products at 2800 F, 150 lbf/in². Equilibrium mixture: CO₂, H₂O, O₂, N₂, NO

	N ₂	+	0 ₂	\Leftrightarrow	2 NO
initial	19.74		1.75		0
change	-X		-X		+2x
equil.	19.74-x		1.75-x		2x

Equil. comp. $n_{CO2} = 2$, $n_{H2O} = 3$, $n_{O2} = 1.75$ -x, $n_{N2} = 19.74$ -x, $n_{NO} = 2x$

K = 1.283×10⁻⁴ =
$$\frac{y_{NO}^2}{y_{N2}y_{O2}} \left(\frac{P}{P^0}\right)^0 = \frac{4x^2}{(19.74-x)(1.75-x)}$$

Solving, x = 0.03295

$$y_{\rm NO} = \frac{2 \times 0.032\ 95}{26.49} = 0.002\ 49$$

b)

$$K = 5.259 \times 10^{-8} = \frac{y_{CO}^2 y_{O2}}{y_{CO2}^2} \left(\frac{P}{P^0}\right)^1 = \left(\frac{2a}{2 \cdot 2a}\right)^2 \left(\frac{1.75 \cdot x + a}{26 \cdot 49 + a}\right) \left(\frac{150}{14 \cdot 504}\right)$$

Since Table A.11 corresponds to a pressure P_0 of 100 kPa, which is 14.504 lbf/in². This equation should be solved simultaneously with the equation solved in part a) (modified to include the unknown a). Since x was found to be small and also a will be very small, the two are practically independent. Therefore, use the value x = 0.032~95 in the equation above, and solve for a.

$$\left(\frac{a}{1-a}\right)^2 \left(\frac{1.75-0.032\ 95+a}{26.49+a}\right) = \left(\frac{14.504}{150}\right) \times 5.259 \times 10^{-8}$$

Solving, a = 0.000 28 or $y_{CO} = 2.1 \times 10^{-5}$ negligible for most applications.

15.101E

One pound mole of air (assumed to be 78% nitrogen, 21% oxygen, and 1% argon) at room temperature is heated to 7200 R, 30 lbf/in.². Find the equilibrium composition at this state, assuming that only N_2 , O_2 , NO, O, and Ar are present.

1 lbmol air (0.78 N_2 , 0.21 O_2 , 0.01 Ar) heated to 7200 R, 30 lbf/in².

1) $N_2 + O_2 \Leftrightarrow 2 \text{ NO}$ 2) $O_2 \Leftrightarrow 2 \text{ O}$ change -a -a +2a change -b +2b

Equil.:

$$n_{N2} = 0.78 \cdot a \qquad n_{Ar} = 0.01 \qquad n_{NO} = 2a$$

 $n_{O2} = 0.21 \cdot a \cdot b \qquad n_{O} = 2b \qquad n = 1 + b$
 $K_1 = 0.0895 = \frac{4a^2}{(0.78 \cdot a)(0.21 \cdot a \cdot b)} \left(\frac{30}{14.504}\right)^0$
 $K_2 = 2.221 = \frac{4b^2}{(1+b)(0.21 \cdot a \cdot b)} \left(\frac{30}{14.504}\right)$

Divide 1st eq'n by 2nd and solve for a as function(b), using

$$X = \frac{K_1}{K_2} \left(\frac{P}{P^0}\right) = 0.083\ 35$$

Get
$$Xb^2 r \sqrt{\frac{4 \times 0.78(1+b)}{1+b}} r$$
(1)

$$a = \frac{Xb^2}{2(1+b)} \left[-1 + \sqrt{1 + \frac{4 \times 0.78(1+b)}{Xb^2}} \right]$$
(1)
Also

$$\frac{b^2}{(1+b)(0.21-a-b)} = \frac{K_2}{4(P/P^0)} = 0.268\ 44$$
(2)

Assume b = 0.1269From (1), get a = 0.0299Then, check a & b in $(2) \Rightarrow OK$ Therefore, Subst. N2 O2 0 NO Ar 0.7501 0.0532 0.01 0.2538 0.0598 n у 0.6656 0.0472 0.0089 0.2252 0.0531

15.102E

One pound mole of water vapor at 14.7 lbf/in.², 720 R, is heated to 5400 R in a constant pressure steady flow process. Determine the final composition, assuming that H_2O , H_2 , H, O_2 , and OH are present at equilibrium.

Reactions:

1) $2 H_2 O \Leftrightarrow 2 H_2 + O_2$ 2) $2 H_2 O \Leftrightarrow H_2 + 2 OH$ change -2a + 2a + a change -2b + b + 2b3) $H_2 \Leftrightarrow 2 H$ change -c + 2cAt equilibrium (5400 R, 14.7 lbf/in²) $n_{H2O} = 1 - 2a - 2b$ $n_{OH} = 2b$ $n_{H2} = 2a + b - c$ $n_H = 2c$ $n_{O2} = a$ $n_{TOT} = 1 + a + b + c$ $\frac{K_1}{(P/P^0)} = \frac{2.062 \times 10^{-3}}{1.03} = (\frac{2a + b - c}{1 - 2a - 2b})^2 (\frac{a}{1 + a + b + c})$ $\frac{K_2}{(P/P^0)} = \frac{2.893 \times 10^{-3}}{1.03} = (\frac{2a + b - c}{1 + a + b + c}) (\frac{2b}{1 - 2a - 2b})^2$ $\frac{K_3}{(P/P^0)} = \frac{2.496 \times 10^{-2}}{1.03} = \frac{(2a)^2}{(2a + b - c)(1 + a + b + c)}$

These three equations must be solved simultaneously for a, b & c: a = 0.0622, b = 0.0570, c = 0.0327

and
$$n_{H2O} = 0.7616 \quad y_{H2O} = 0.6611$$

 $n_{H2} = 0.1487 \quad y_{H2} = 0.1291$
 $n_{O2} = 0.0622 \quad y_{O2} = 0.0540$

15.103E

Acetylene gas and x times theoretical air (x > 1) at room temperature and 75 lbf/in.² are burned at constant pressure in an adiabatic steady flow process. The flame temperature is 4600 R, and the combustion products are assumed to consist of N₂, O₂, CO₂, H₂O, CO, and NO. Determine the value of x.

Combustion:

$$C_2H_2 + 2.5x O_2 + 9.4x N_2 \rightarrow 2 CO_2 + H_2O + 2.5(x-1)O_2 + 9.4x N_2$$

Eq. products 4600 R, 75 lbf/in²: N₂, O₂, CO₂, H₂O, CO, NO

2 Reactions:

1) 20	$CO_2 \Leftrightarrow 2CO$ -	+ O ₂	2)	N_2 +	$+O_2 \Leftrightarrow$	2 NO
change	-2a +2a	+a	change	-b	-b	+2b
$n_{CO} =$	np.: 9.4x-b 2.5x-2.5+a-b 2a 11.9x+0.5+a		$n_{CO2} =$ $n_{H2O} =$ $n_{NO} =$	2-2 1 2b		
At 4600 R,	from A.17: K	$L_1 = 2.3$	59×10 ⁻³ , 1	$K_2 = 2$	4.249×1	0-3
$\frac{K_1}{(P/P^0)} = \frac{2.2}{2}$	$\frac{359 \times 10^{-3}}{5.103} = 4.6$	522×10	$-4 = \left(\frac{a}{1-a}\right)^2$	2.5x- 11.92	- <u>2.5+a-t</u> x+0.5+a	$\frac{2}{a}$)
K ₂ = 4.249	$\times 10^{-3} = {(9.4-b)}$	$(2b)^2$)(2.5x-)	2.5+a-b)			

Also, from the 1st law: $H_p - H_R = 0$ where

$$H_{R} = 1(+97\ 477) + 0 + 0 = +97\ 497\ Btu$$
$$H_{P} = (9.4x-b)(0+32\ 817) + (2.5x-2.5+a-b)(0+34\ 605)$$
$$+ (2-2a)(-169\ 184+53\ 885) + 1(-103\ 966+43\ 899)$$
$$+ 2a(-47\ 518+33\ 122) + 2b(38\ 818+31\ 161)$$

Substituting,

394 992 × x + 236 411 × a + 72 536 × b - 377 178 = 97477

which results in a set of 3 equations in the 3 unknowns x,a,b. Trial and error solution from the last eq. and the ones for K_1 and K_2 . The result is

x = 1.12, a = 0.1182, b = 0.05963

Review problems

15.104E

Methane is burned with theoretical oxygen in a steady flow process, and the products exit the combustion chamber at 5300 F, 100 lbf/in.². Calculate the equilibrium composition at this state, assuming that only CO_2 , CO, H_2O , H_2 , O_2 , and OH are present.

 $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O_2$ Combustion: Dissociation reactions: At equilibrium: $2 H_2 O \Leftrightarrow 2 H_2 + O_2$ n_{H2O} = 2-2a-2b 1) change -2a +2a +a $n_{H2} =$ 2a+b $2 H_2 O \Leftrightarrow H_2 + 2 O H$ n_{O2} = 2) a+c change -2b +b +2b n_{OH} = 2b 3) $2 \operatorname{CO}_2 \Leftrightarrow 2 \operatorname{CO} + \operatorname{O}_2$ $n_{CO2} =$ 1-2c change -2c +2c +c $n_{CO} =$ 2c n_{TOT} = 3+a+b+c

Products at 5300F, 100 lbf/in²

$$K_{1} = 0.007 \ 328 = \left(\frac{2a+b}{2-2a-2b}\right)^{2} \left(\frac{a+c}{3+a+b+c}\right) \left(\frac{100}{14.504}\right)$$
$$K_{2} = 0.012 \ 265 = \left(\frac{2b}{2-2a-2b}\right)^{2} \left(\frac{2a+b}{3+a+b+c}\right) \left(\frac{100}{14.504}\right)$$
$$K_{3} = 0.426 \ 135 = \left(\frac{2c}{1-2c}\right)^{2} \left(\frac{a+c}{3+a+b+c}\right) \left(\frac{100}{14.504}\right)$$

These 3 equations must be solved simultaneously for a, b, & c. If solving by hand divide the first equation by the second, and solve for c = fn(a,b). This reduces the solution to 2 equations in 2 unknowns. Solving,

$$a = 0.0245, b = 0.1460, c = 0.2365$$

Substance:	H2O	H2	O2	OH	CO2	CO
n	1.659	0.195	0.260	0.292	0.527	0.473
У	0.4871	0.0573	0.0763	0.0857	0.1547	0.1389

15.105E

In a test of a gas-turbine combustor, saturated-liquid methane at 210 R is to be burned with excess air to hold the adiabatic flame temperature to 2880 R. It is assumed that the products consist of a mixture of CO₂, H₂O, N₂, O₂, and NO in chemical equilibrium. Determine the percent excess air used in the combustion, and the percentage of NO in the products.

$$\begin{array}{rl} \mathrm{CH}_{4}+2x\,\mathrm{O}_{2}+7.52x\,\mathrm{N}_{2} \\ & \rightarrow 1\,\mathrm{CO}_{2}+2\,\mathrm{H}_{2}\mathrm{O}+(2x\text{-}2)\,\mathrm{O}_{2}+7.52x\,\mathrm{N}_{2} \\ \mathrm{Then} & \mathrm{N}_{2} & + & \mathrm{O}_{2} \Leftrightarrow 2\,\mathrm{NO} & \mathrm{Also}\,\,\mathrm{CO}_{2}\,\,\mathrm{H}_{2}\mathrm{O} \\ \mathrm{init} & 7.52x\,\,2x\text{-}2\,\,0\,\,& 1\,\,2 \\ \mathrm{ch.}\,\,& -\mathrm{a}\,\,& -\mathrm{a}\,\,+2\mathrm{a}\,\,& 0\,\,0 \\ \mathrm{equil.} & (7.52x\text{-}\mathrm{a})\,(2x\text{-}2\text{-}\mathrm{a})\,\,2\mathrm{a}\,\,& 1\,\,2 \\ \mathrm{n}_{\mathrm{TOT}}=1+9.52x \\ 2880\,\mathrm{R:}\,\,& \ln\mathrm{K}=-10.55,\,\,\,\mathrm{K}=2.628\times10^{-5} \\ 2.628\times10^{-5}\,\mathrm{K}=\frac{y_{\mathrm{NO}}^{2}}{y_{\mathrm{N2}}y_{\mathrm{O2}}}\Big(\frac{\mathrm{P}}{\mathrm{P}^{0}}\Big)^{0}=\frac{y_{\mathrm{NO}}^{2}}{y_{\mathrm{N2}}y_{\mathrm{O2}}}=\frac{4\mathrm{a}^{2}}{(7.52x\text{-}\mathrm{a})(2x\text{-}2\text{-}\mathrm{a})} \\ \mathrm{H}_{\mathrm{R}}=1\Big[-32\,\,190\,+\,(-1854\,\text{-}4300)\Big]\,+\,0\,+\,0\,(\mathrm{assume}\,\,77\,\,\mathrm{F})=-38\,\,344\,\,\mathrm{Btu} \\ \mathrm{H}_{\mathrm{p}}=1(-169\,\,184\,+\,29\,\,049)\,+\,2(-103\,\,966\,+\,22\,\,746) \\ & +\,(7.52x\text{-}\mathrm{a})(18\,\,015)\,+\,(2x\text{-}2\text{-}\mathrm{a})(19\,\,031)\,+\,2\mathrm{a}(38\,\,818\,+\,18\,\,624) \\ = -340\,\,639\,+\,173\,\,535\,\,\mathrm{x}\,+\,77\,\,838\,\,\mathrm{a} \\ \mathrm{Assume}\,\,\mathbf{a}\sim0,\,\mathrm{then}\,\,\mathrm{from}\,\,\mathrm{H}_{\mathrm{p}}\,-\,\mathrm{H}_{\mathrm{R}}=0\,\,\rightarrow\,\,\mathrm{x}=1.742 \end{array}$$

Subst.

$$\frac{a^2}{(13.1-a)(1.484-a)} = \frac{2.628 \times 10^{-5}}{4}, \qquad \text{get} \qquad a \approx 0.01125$$

Use this a in 1st law

$$x = \frac{302\ 295 - 77\ 838 \times 0.01125}{173\ 535} = 1.737$$

$$\Rightarrow \qquad \frac{a^2}{(13.062 - a)(1.474 - a)} = \frac{2.628 \times 10^{-5}}{4}, a = 0.0112$$

$$\Rightarrow \qquad x = 1.737 \qquad \% \text{ excess air} = 73.7\ \%$$

$$\% \text{ NO} = \frac{2 \times 0.0112 \times 100}{1 + 0.52 \times 1.727} = 0.128\ \%$$

% NO =
$$\frac{2 \times 1000}{1 + 9.52 \times 1.737} = 0.128$$

15.106E

Dry air is heated from 77 F to 7200 R in a 14.7 lbf/in.² constant-pressure process. List the possible reactions that may take place and determine the equilibrium composition. Find the required heat transfer.

Air assumed to be 21% oxygen and 79% nitrogen by volume.

From the elementary reactions at 4000 K = 7200 R (A.11):

(1) $O_2 \iff 2 O$ $K_1 = 2.221 = y_0^2/y_{02}$ (2) $N_2 \iff 2 N$ $K_2 = 3.141 \times 10^{-6} = y_N^2/y_{N2}$

(3)
$$N_2 + O_2 \ll 2 \text{ NO}$$
 $K_3 = 0.08955 = y_{NO}^2 / y_{N2} y_{O2}$

Call the shifts a,b,c respectively so we get

$$\begin{split} n_{O2} &= 0.21\text{-a-c}, \quad n_{O} = 2a, \quad n_{N2} = 0.79\text{-b-c}, \quad n_{N} = 2b, \\ n_{NO} &= 2c, \quad n_{tot} = 1\text{+}a\text{+}b \end{split}$$

From which the molefractions are formed and substituted into the three equilibrium equations. The result is corrected for 1 atm = $14.7 \text{ lbf/in}^2 = 101.325 \text{ kPa}$ versus the tables 100 kPa

$$\begin{split} K_1 &= 2.1511 = y_0^2 / y_{02} = 4a^2 / [(1+a+b)(0.21-a-c)] \\ K_2 &= 3.042 \times 10^{-6} = y_N^2 / y_{N2} = 4b^2 / [(1+a+b)(0.79-b-c)] \\ K_3 &= 0.08955 = y_{NO}^2 / y_{N2} y_{O2} = 4c^2 / [(0.79-b-c)(0.21-a-c)] \end{split}$$

which give 3 eqs. for the unknowns (a,b,c). Trial and error assume b = c = 0 solve for a from K₁ then for c from K₃ and finally given the (a,c) solve for b from K₂. The order chosen according to expected magnitude K₁>K₃>K₂

$$\begin{split} a &= 0.15, \ b = 0.000832, \ c = 0.0244 \implies \\ n_{O2} &= 0.0356, \ n_O = 0.3, \ n_{N2} = 0.765, \ n_N = 0.00167, \ n_{NO} = 0.049 \\ Q &= H_{ex} - H_{in} = n_{O2} \Delta \bar{h}_{O2} + n_{N2} \Delta \bar{h}_{N2} + n_O (\bar{h}_{fO} + \Delta \bar{h}_O) \\ &\quad + n_N (\bar{h}_{fN} + \Delta \bar{h}_N) + n_{NO} (\bar{h}_{fNO} + \Delta \bar{h}_{NO}) - 0 \\ &= 0.0356 \times 59\ 632 + 0.765 \times 55\ 902 + 0.3(107\ 124 + 33\ 394) \\ &\quad + 0.00167(203\ 216 + 33\ 333) + 0.049(38\ 818 + 57\ 038) \\ &= 92\ 135\ Btu/lbmol\ air \end{split}$$

[If no reaction: $Q = n_{O2}\Delta \bar{h}_{O2} + n_{N2}\Delta \bar{h}_{N2} = 56\ 685\ Btu/lbmol\ air]$