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CHAPTER 13         6th ed.          CORRESPONDANCE TABLE 
 
 The new problem set relative to the problems in the fifth edition. 
 

New 5th New 5th New 5th New 5th 
  50 new 80 50 110 46 
21 1 51 new 81 33 111 55 
22 3 52 new 82 34 112 57 
23 new 53 new 83 35 113 62 
24 2 54 new 84 39 114 65 
25 4 55 22 85 42 115 69 
26 new 56 25 86 56 116 70 
27 new 57 24a 87 44 117 67 
28 new 58 24b 88 45 118 74a 
29 6 59 47b 89 48 119 74b 
30 7 60 29 90 51   
31 5 61 23 91 52   
32 9 62 27a 92 53   
33 8 63 27b 93 58a   
34 new 64 28 94 58b   
35 11 65 30 95 new    
36 new 66 68 96 new    
37 10 67 new 97 new    
38 12 68 new 98 54   
39 new 69 20 99 new   
40 new 70 21 100 new   
41 13 71 31 101 new   
42 new 72 38 102 60   
43 16 73 new 103 37   
44 new 74 new 104 61   
45 17 75 36 105 73a,b   
46 new 76 43 106 73a,c   
47 14 77 47a 107 26   
48 new 78 new 108 40   
49 15 79 49 109 41   
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The English-unit problems are: 
 

New 5th SI New 5th SI New 5th SI 
120 75 21mod 130 83 69 140 97 86 
121 76 22 131 84 70 141 93 90 
122 new 27 132 82 73 142 96 92 
123 77 31 133 86 74 143 new 95 
124 78 41 134 95 75 144 90 108 
125 81 45 135 92 76 145 89 109 
126 79 47 136 87 81    
127 80 49 137 88 82    
128 new 51 138 94 80    
129 85 65 139 91 85    

 
 
 mod indicates a modification from the previous problem that changes the solution 
but otherwise is the same type problem. 
 



  Sonntag, Borgnakke and van Wylen 

The following table gives the values for the compressibility, enthalpy departure and the 
entropy departure along the saturated liquid-vapor boundary. These are used for all the 
problems using generalized charts as the figures are very difficult to read accurately 
(consistently) along the saturated liquid line. It is suggested that the instructor hands out 
copies of this page or let the students use the computer for homework solutions. 
 

 

T
r
 P

r
 Z

f
 Z

g
 d(h/RT)

f
 d(h/RT)

g
 d(s/R)

f
 d(s/R)

g
 

        

0.96 0.78 0.14 0.54 3.65 1.39 3.45 1.10 

0.94 0.69 0.12 0.59 3.81 1.19 3.74 0.94 

0.92 0.61 0.10 0.64 3.95 1.03 4.00 0.82 

0.90 0.53 0.09 0.67 4.07 0.90 4.25 0.72 

0.88 0.46 0.08 0.70 4.17 0.78 4.49 0.64 

0.86 0.40 0.07 0.73 4.26 0.69 4.73 0.57 

0.84 0.35 0.06 0.76 4.35 0.60 4.97 0.50 

0.82 0.30 0.05 0.79 4.43 0.52 5.22 0.45 

0.80 0.25 0.04 0.81 4.51 0.46 5.46 0.39 

0.78 0.21 0.035 0.83 4.58 0.40 5.72 0.35 

0.76 0.18 0.03 0.85 4.65 0.34 5.98 0.31 

0.74 0.15 0.025 0.87 4.72 0.29 6.26 0.27 

0.72 0.12 0.02 0.88 4.79 0.25 6.54 0.23 

0.70 0.10 0.017 0.90 4.85 0.21 6.83 0.20 

0.68 0.08 0.014 0.91 4.92 0.18 7.14 0.17 

0.66 0.06 0.01 0.92 4.98 0.15 7.47 0.15 

0.64 0.05 0.009 0.94 5.04 0.12 7.81 0.12 

0.60 0.03 0.005 0.95 5.16 0.08 8.56 0.08 

0.58 0.02 0.004 0.96 5.22 0.06 8.97 0.07 

0.54 0.01 0.002 0.98 5.34 0.03 9.87 0.04 

0.52 0.0007 0.0014 0.98 5.41 0.02 10.38 0.03 
 



  Sonntag, Borgnakke and van Wylen 

 

Concept-Study Guide Problems 
 
 
13.1 
 Mention two uses of the Clapeyron equation. 
 
  If you have experimental information about saturation properties down to 

a certain temperature Clapeyron equation will allow you to make an intelligent 
curve extrapolation of the saturated pressure versus temperature function Psat(T) 
for lower temperatures. 

 
  From Clapeyrons equation we can calculate a heat of evaporation, heat of  

sublimation or heat of fusion based on measurable properties P, T and v. 
 
13.2 
 The slope dP/dT of the vaporization line is finite as you approach the critical 

point, yet hfg and vfg both approach zero. How can that be? 

 
  The slope is    dP/dT =  hfg / Tvfg 

 
  Recall the math problem what is the limit of    f(x)/g(x)   when x goes 

towards a point where both functions f and g goes towards zero. A finite limit for 
the ratio is obtained if both first derivatives are different from zero so we have 

     dP/dT →  [dhfg /dT] / d(Tvfg)/dT   as   T →  Tc 

 
13.3 
 In view of Clapeyron’s equation and Fig. 3.7, is there something special about ice 

I versus the other forms of ice? 
 
  Yes. The slope of the phase boundary  dP/dT is negative for ice I to liquid 

whereas it is positive for all the other ice to liquid interphases. This also means 
that these other forms of ice are all heavier than liquid water. The pressure must 
be more than 200 MPa = 2000 atm so even the deepest ocean cannot reach that 
pressure (recall about 1 atm per 10 meters down). 

 
13.4 
   If we take a derivative as  (∂P/∂T)v in the two-phase region, see Figs. 3.18 and 

3.19, does it matter what v is? How about T? 
 
  In the two-phase region, P is a function only of T, and not dependent on v. 
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13.5 
 Sketch on a P-T diagram how a constant v line behaves in the compressed liquid 

region, the two-phase L-V region and the superheated vapor region? 
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13.6 

If I raise the pressure in an isentropic process, does h go up or down? Is that 
independent upon the phase? 

 
Tds = 0 = dh – vdP  ,  so h increases as P increases, for any phase. The 
magnitude is proportional to v (i.e. large for vapor and small for liquid and 
solid phases) 

 
 
13.7 
 If I raise the pressure in an isothermal process does h go up or down for a liquid 

or solid? What do you need to know if it is a gas phase? 
 

Eq. 13.25:   (
∂h
∂P

)
T
  = v – T (

∂v
∂T

)
P
  = v[1 - Tα 

P
] 

 Liquid or solid, α 
P
 is very small, h increases with P ;  

 For a gas, we need to know the equation of state. 
 

 
13.8 
 The equation of state in Example 13.3 was used as explicit in v. Is it explicit in P? 
 
  Yes, the equation can be written explicitly in P. 

    P = RT / [v + C/T3] 
 
13.9 
 Over what range of states are the various coefficients in Section 13.5 most useful? 
 

 For solids or liquids, where the coefficients are essentially constant over a 
wide range of P’s and T’s. 
 

 
13.10 
  For a liquid or a solid is v more sensitive to T or P?  How about an ideal gas? 
 

For a liquid or solid, v is more sensitive to T than P. 
  For an ideal gas,  v = RT/P , varies directly with T, inversely with P. 
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13.11 
  If I raise the pressure in a solid at constant T, does s go up or down? 
 

In Example 13.4, it is found that change in s with P at constant T is 
negatively related to volume expansivity (a positive value for a solid), 
ds

T
 = - v α 

P
 dP

T
     , so raising P decreases s. 

 
 
13.12 
 Most equations of state are developed to cover which range of states? 
 

 Most equations of state are developed to cover the gaseous phase, from 
low to moderate densities.  Many cover high-density regions as well, including 
the compressed liquid region. 
 

 
13.13 
 Is an equation of state valid in the two-phase regions? 
 

 No.  In a two-phase region, P depends only on T.  There is a discontinuity 
at each phase boundary. 
  

 
13.14 
 As P → 0, the specific volume v → ∞. For P → ∞, does   v → 0? 
 
  At very low P, the substance will be essentially an ideal gas,  Pv  = RT, so 

that v becomes very large.  However at very high P, the substance eventually 
must become a solid, which cannot be compressed to a volume approaching zero. 

 
 
13.15 
 Must an equation of state satisfy the two conditions in Eqs. 13.50 and 13.51? 
 

 It has been observed from experimental measurements that substances do 
behave in that manner.  If an equation of state is to be accurate in the near-critical 
region, it would have to satisfy these two conditions. 
 If the equation is simple it may be overly restrictive to inpose these as it 
may lead to larger inaccuracies in other regions.  
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13.16 
 At which states are the departure terms for h and s small? What is Z there? 
 

 Departure terms for h and s are small at very low pressure or at very high 
temperature.  In both cases, Z is close to 1. 
  

 
13.17 
 What is the benefit of the generalized charts? Which properties must be known 

besides the charts themselves? 
 

 The generalized charts allow for the approximate calculations of enthalpy 
and entropy changes (and P,v,T behavior), for processes in cases where specific 
data or equation of state are not known. They also allow for approximate phase 
boundary determinations.  It is necessary to know the critical pressure and 
temperature, as well as ideal-gas specific heat. 
 

 
13.18 
 What does it imply if the compressibility factor is larger than 1? 
 

 Compressibility factor greater than one results from domination of 
intermolecular forces of repulsion (short range) over forces of attraction (long 
range) – either high temperature or very high density. This implies that the 
density is lower than what is predicted by the ideal gas law, the ideal gas law 
assumes the molecules (atoms) can be pressed closer together. 
 

 
13.19 
 The departure functions for h and s as defined are always positive. What does that 

imply for the real substance h and s values relative to ideal gas values? 
 
  Real-substance h and s are less than the corresponding ideal-gas values. 
 
 
13.20 
 What is the benefit of Kay’s rule versus a mixture equation of state? 
 

 Kay’s rule for a mixture is not nearly as accurate as an equation of state 
for the mixture, but it is very simple to use. 
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Clapeyron Equation 
 
13.21 

 A special application requires R-12 at −140°C. It is known that the triple-point 
temperature is −157°C. Find the pressure and specific volume of the saturated 
vapor at the required condition. 

The lowest temperature in Table B.3 for R-12 is -90oC, so it must be extended 

to -140oC using the Clapeyron Eq. 13.7 integrated as in example 13.1  

Table B.3:    at T
1
 = -90oC = 183.2 K,    P

1
 = 2.8 kPa. 

 R = 
8.3145
120.914 = 0.068 76 kJ/kg K 

 ln 
P
P

1
 = 

h
fg

R   
(T - T

1
)

T × T
1

 = 
189.748
0.068 76 

(133.2 - 183.2)
133.2 × 183.2

 = -5.6543 

    P  = 2.8 exp(-5.6543) = 0.0098 kPa 
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13.22 

 Ice (solid water) at −3°C, 100 kPa, is compressed isothermally until it becomes 
liquid. Find the required pressure. 

Water, triple point T = 0.01oC ,   P = 0.6113 kPa 

Table B.1.1:   vf = 0.001 m3/kg,   hf = 0.01 kJ/kg,  

Tabel B.1.5:    vi = 0.001 0908 m3/kg,   hi = -333.4 kJ/kg 

Clapeyron   
dPif
dT  = 

hf - hi
(vf - vi)T

 = 
333.4

-0.0000908 × 273.16
 = -13 442 kPa/K 

  ∆P ≈ 
dPif
dT  ∆T = -13 442(-3 - 0.01) = 40 460 kPa 

  P = P
tp

 + ∆P = 40 461 kPa  
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13.23 

An approximation for the saturation pressure can be ln Psat = A – B/T, where A 

and B are constants. Which phase transition is that suitable for, and what kind of 
property variations are assumed? 

 

 Clapeyron Equation expressed for the three phase transitions are shown in Eqs. 
13.5-13.7. The last two leads to a natural log function if integrated and ideal gas 
for the vapor is assumed. 

     
dPsat

dT  = Psat 
hevap

RT2  

 where hevap is either hfg or hig. Separate the variables and integrate 

    P
-1
sat dPsat = hevap R-1 T-2 dT 

    ln Psat = A – B/T ; B = hevap R-1 

 if we also assume hevap is constant and A is an integration constant. The function 
then applies to the liquid-vapor and the solid-vapor interphases with different 
values of A and B. As hevap is not excactly constant over a wide interval in T 
means that the equation cannot be used for the total domain. 
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13.24 
In a Carnot heat engine, the heat addition changes the working fluid from 
saturated liquid to saturated vapor at T, P. The heat rejection process occurs at 
lower temperature and pressure (T − ∆T), (P − ∆P). The cycle takes place in a 
piston cylinder arrangement where the work is boundary work. Apply both the 
first and second law with simple approximations for the integral equal to work. 
Then show that the relation between ∆P and ∆T results in the Clapeyron equation 
in the limit ∆T → dT. 

 
 

s 

−∆ 

P 

v 

P 

T 

T-∆ T 

1 2 

3 4 
P-∆ P 

P-∆ P P 

s   at T v   at Tfg fg

4 3

1 2
T

T

T T

 
  

q
H

 = Tsfg;     q
L
 = (T-∆T)sfg  ; wnet = q

H
 - q

L
 = ∆Tsfg 

Problem similar to development in section 13.1 for shaft work, here boundary 

movement work,   w = ⌡⌠ Pdv 

    w
NET

 = P(v
2
-v

1
) + ⌡⌠

2

3

 Pdv + (P - ∆P)(v
4
 - v

3
) + ⌡⌠

1

4

 Pdv 

Approximating, 

       ⌡⌠
2

3

 Pdv  ≈  (P - 
∆P
2 ) (v

3
 - v

2
);   ⌡⌠

1

4

 Pdv  ≈  (P - 
∆P
2 ) (v

1
 - v

4
) 

Collecting terms:    w
NET

 ≈ ∆P[(
v2+v3

2 ) - (
v1+v4

2 )]  

(the smaller the ∆P, the better the approximation) 

    ⇒  
∆P
∆T

  ≈  
sfg

1
2(v2 + v3) − 

1
2(v1 + v4)

 

In the limit as    ∆T → 0:    v3 →  v2 = vg ,     v4 → v1 = vf 

                 & lim∆T→0
∆P
∆T

 = 
dPsat
dT  = 

sfg
vfg
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13.25 

 Calculate the values hfg and sfg for nitrogen at 70 K and at 110 K from the 
Clapeyron equation, using the necessary pressure and specific volume values 
from Table B.6.1. 

Clapeyron equation Eq.13.7:          
dPg
dT  = 

hfg
Tvfg

 = 
sfg
vfg

 

For N2 at 70 K, using values for Pg from Table B.6 at 75 K and 65 K, and also 

vfg at 70 K, 

 hfg ≈ T(vg-vf)
∆Pg

∆Τ   = 70(0.525 015)(76.1-17.41
75-65 ) = 215.7 kJ/kg  (207.8) 

 sfg = hfg/T = 3.081 kJ/kg K  (2.97) 

Comparison not very close because Pg not linear function of T. Using 71 K & 

69 K from the software,  

      hfg = 70(0.525 015)(44.56-33.24
71-69 ) = 208.0 kJ/kg 

At 110 K,   hfg ≈ 110(0.014 342)(1938.8-1084.2
115-105 ) = 134.82 kJ/kg  (134.17) 

  sfg = 
134.82

110  = 1.226 kJ/kg K  (1.22) 
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13.26 

Ammonia at –70oC is used in a special application at a quality of 50%. Assume 

the only table available is B.2 that goes down to –50oC. To size a tank to hold 0.5 
kg with x = 0.5, give your best estimate for the saturated pressure and the tank 
volume. 

 
 To size the tank we need the volume and thus the specific volume. If we do not 

have the table values for vf and vg we must estimate those at the lower T.  We 

therefore use Clapeyron equation to extrapolate from –50oC to –70oC to get the 
saturation pressure and thus vg assuming ideal gas for the vapor. 

 
 The values for vf  and hfg do not change significantly so we estimate 

 Between  -50oC and –70oC:   vf = 0.001375 m3/kg,  hfg = 1430 kJ/kg 
  
 The integration of Eq.13.7 is the same as in Example 13.1 so we get 
 

  ln 
P2
P1

 =  
hfg
R   ( 

T2 - T1
T2T1

 ) = 
1430

0.4882 
-70 + 50

203.15 × 223.15
 = -1.2923 

  P2 = P1 exp(-1.2923) = 40.9 exp(-1.2923) = 11.2 kPa 

  vg = RT2/P2 = 
0.4882 × 203.15

11.2  = 8.855 m3/kg 

  v2 = (1-x) vf + x vg = 0.5 × 0.001375 + 0.5 × 8.855 = 4.428 m3/kg 

  V2 = mv2 = 2.214 m3  
 
  

  
 
 
A straight line extrapolation 
will give a negative pressure. 

P

T

-50-70  
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13.27 

The saturation pressure can be approximated as  ln Psat = A – B/T, where A and B 

are constants. Use the steam tables and determine A and B from properties at 25o

C only. Use the equation to predict the saturation pressure at 30oC and compare to 
table value. 

 

ln Psat = A – B/T   ⇒ 
dPsat
dT  = Psat (-B)(-T-2) 

 so we notice from Eq.13.7 and Table values from B.1.1 and A.5 that    

B = 
hfg
R  = 

2442.3
0.4615 = 5292 K 

 Now the constant A comes from the saturation pressure as 

   A = ln Psat + B/T = ln 3.169 + 
5292

273.15 + 25 = 18.9032 

 Use the equation to predict the saturation pressure at 30C as 

   ln Psat = A – B/T = 18.9032 - 
5292

273.15 + 30 = 1.4462 

    Psat = 4.2469 kPa 

compare this with the table value of  Psat = 4.246 kPa and we have a very close 

approximation. 
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13.28 

Using the properties of water at the triple point, develop an equation for the 
saturation pressure along the fusion line as a function of temperature. 

 Solution: 

 The fusion line is shown in Fig. 3.4 as the S-L interphase. From Eq.13.5 we have 

      
dPfusion

dT  = 
hif

Tvif
 

 Assume hif and vif are constant over a range of T’s. We do not have any simple 

models for these as function of T other than curve fitting. Then we can integrate 
the above equation from the triple point (T1, P1) to get the pressure P(T) as 

     P – P1 =  
hif
vif

  ln 
T
T1

  

 Now take the properties at the triple point from B.1.1 and B.1.5 

    P1 = 0.6113 kPa,     T1 = 273.16 K 

    vif = vf – vi = 0.001 – 0.0010908 = - 9.08 × 10−5 m3/kg 

    hif = hf – hi = 0.0 – (-333.4) = 333.4 kJ/kg 

 The function that approximates the pressure becomes 

    P = 0.6113 – 3.672  × 106  ln 
T
T1

       [kPa] 
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13.29 

Helium boils at 4.22 K at atmospheric pressure, 101.3 kPa, with hfg = 83.3 

kJ/kmol. By pumping a vacuum over liquid helium, the pressure can be lowered, 
and it may then boil at a lower temperature. Estimate the necessary pressure to 
produce a boiling temperature of 1 K and one of 0.5 K. 

 Solution: 

Helium at 4.22 K:   P
1
 = 0.1013 MPa,    h

-
FG

 = 83.3 kJ/kmol 

 
dP

SAT

dT  = 
h

FG

Tv
FG

 ≈ 
h

FG
P

SAT

RT2    ⇒    ln 
P

2

P
1
 = 

h
FG

R [ 1
T

1
 − 

1
T

2
] 

 For T
2
 = 1.0 K: 

  ln 
P

2

101.3 = 
83.3

8.3145[
1

4.22 − 
1

1.0]     =>   P
2
 = 0.048 kPa = 48 Pa 

 For T
2
 = 0.5 K: 

  ln 
P

2

101.3 = 
83.3

8.3145[
1

4.22 − 
1

0.5] 

  P
2
 = 2.1601×10-6 kPa = 2.1601 × 10-3 Pa 
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13.30 

 A certain refrigerant vapor enters a steady flow constant pressure condenser at 
150 kPa, 70°C, at a rate of 1.5 kg/s, and it exits as saturated liquid. Calculate the 
rate of heat transfer from the condenser. It may be assumed that the vapor is an 
ideal gas, and also that at saturation, vf << vg. The following quantities are known 

for this refrigerant: 

    ln Pg = 8.15 - 1000/T ;  CP = 0.7 kJ/kg K 

 with pressure in kPa and temperature in K. The molecular weight is 100. 

Refrigerant:  State 1   T
1
 = 70oC  P

1
 = 150 kPa 

State 2   P
2
 = 150 kPa x

2
 = 1.0        State 3 P

3
 = 150 kPa x

3
 = 0.0 

Get the saturation temperature at the given pressure 

 ln (150) = 8.15 - 1000/T
2
  =>  T

2
 = 318.5 K = 45.3oC = T

3
  

1
q

3
 = h

3
 - h

1
 = (h

3
 - h

2
) + (h

2
 - h

1
) = - hfg T3 + C

P0
(T

2
 - T

1
) 

 
dPg

dT  = 
hfg

Tvfg
 ,           vfg ≈ vg = 

RT
Pg

 ,           
dPg
dT  = Pg 

d ln Pg
dT   = 

hfg

RT2 Pg 

 
d ln Pg

dT   =  +1000/T2 =  hfg/RT2 

 hfg = 1000 × R = 1000 × 8.3145/100 = 83.15 kJ/kg 

 
1
q

3
 = -83.15 + 0.7(45.3 - 70) = -100.44 kJ/kg 

 Q
.

COND
  = 1.5(-100.44) = -150.6 kW 

 
 

v

P

s

T

1

23
123
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13.31 

 Using thermodynamic data for water from Tables B.1.1 and B.1.5, estimate the 
freezing temperature of liquid water at a pressure of 30 MPa. 

 
  

 

H
2
O   

dPif
dT  = 

hif
Tvif

 ≈ const 

 
T.P.

30 MPaP 

T  
  At the triple point, 

vif = vf - vi = 0.001 000 - 0.001 090 8 = -0.000 090 8 m3/kg 

hif = hf - hi = 0.01 - (-333.40) = 333.41 kJ/kg 

  
dPif
dT  = 

333.41
273.16(-0.000 090 8) = -13 442 kPa/K 

 ⇒   at P = 30 MPa, 

  T ≈ 0.01 + 
(30 000-0.6)

(-13 442)  = -2.2 oC 
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13.32 

 Small solid particles formed in combustion should be investigated. We would like 
to know the sublimation pressure as a function of temperature. The only 
information available is T, h

FG
 for boiling at 101.3 kPa and T, h

IF
 for melting at 

101.3 kPa. Develop a procedure that will allow a determination of the sublimation 
pressure, P

sat
(T). 

 
 T

NBP
 = normal boiling pt T. 

T
NMP

 = normal melting pt T. 

T
TP 

= triple point T. 

 
1) T

TP
 ≈ T

NMP
 

P

TP

TP

NMP NBP 

101.3 kPa

T

Solid Liquid

Vap.

T TT

P

 

 2) ⌡⌠
0.1013 MPa

P
TP

 (1/P
SAT

) dP
SAT

 ≈ 
⌡

⌠

TNMP

T
TP

 
h

FG

RT2 dT 

    Since h
FG

 ≈ const ≈ h
FG NBP

  the integral over temperature becomes 

  ln 
P

TP

0.1013 ≈ 
h

FG NBP

R [ 1
T

NBP
 - 

1
T

TP
]       →     get P

TP
 

3) h
IG at TP

 = h
G

 - h
I
 = (h

G
 - h

F
) + (h

F
 - h

I
) ≈ h

FG NBP
 + h

IF NMP
  

    Assume h
IG

 ≈ const.  again we can evaluate the integral 

    ln 
P

SUB

P
TP

 = ⌡⌠
PTP

P
SUB

 (1/P
SUB

) dP
SUB

 ≈ 
⌡

⌠

TTP

T

 
h

IG

RT2 dT ≈ 
h

IG

R [ 1
T

TP
 − 

1
T] 

    or P
SUB

 = fn(T) 
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13.33 

 A container has a double wall where the wall cavity is filled with carbon dioxide 
at room temperature and pressure. When the container is filled with a cryogenic 
liquid at 100 K the carbon dioxide will freeze so that the wall cavity has a mixture 
of solid and vapor carbon dioxide at the sublimation pressure. Assume that we do 
not have data for CO2 at 100 K, but it is known that at −90°C: Psat = 38.1 kPa,  

hIG = 574.5 kJ/kg. Estimate the pressure in the wall cavity at 100 K. 

 Solution: 

For CO2 space: at T1 = -90 oC = 183.2 K ,  P1 = 38.1 kPa, hIG = 574.5 kJ/kg 

For T2 = TcO2 = 100 K:  Clapeyron       
dPSUB

dT  = 
hIG

TvIG
 ≈ 

hIGPSUB

RT2  

 ln 
P2

P1
 = 

hIG

R  [ 1
183.2 − 

1
100] = 

574.5
0.188 92 [ 1

183.2 − 
1

100] = -13.81 

 or   P
2
 = P

1
 × 1.005×10-6    ⇒    P

2
 = 3.83×10-5 kPa = 3.83×10-2 Pa 
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Property Relations 
 
13.34 

Use Gibbs relation  du = Tds – Pdv and one of Maxwell’s relations to find an 
expression for (∂u/∂P)T that only has properties P, v and T involved. What is the 

value of that partial derivative if you have an ideal gas? 
 
  du = Tds – Pdv       divide this by dP   so  we get 
 

  






∂u

∂P T
 = T 







∂s

∂P T
 – P 







∂v

∂P T
 =  –T 







∂v

∂T P
 – P 







∂v

∂P T
 

 
 where we have used Maxwell Eq.13.23. Now for an ideal gas we get 

  Ideal gas:    Pv = RT     ⇒     v = 
RT
P  

 then the derivatives are 

    






∂v

∂T P
 = 

R
P and 







∂v

∂P T
 = –RTP–2 

 and the derivative of u is 

   






∂u

∂P T
 =  –T 







∂v

∂T P
 – P 







∂v

∂P T
 = –T 

R
P – P( –RTP–2) = 0 

 This confirm that  u is not sensitive to P and only a function of T. 
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13.35 
 Start from Gibbs relation dh = Tds + vdP and use one of Maxwell’s equation to 

get (∂h/∂v)T in terms of properties P, v and T. Then use Eq.13.24 to also find an 

expression for (∂h/∂T)v. 

       Find  (∂h
∂v
)T  and  (∂h

∂T
)v 

       dh = Tds + vdP  and use Eq.13.22 

      ⇒       (∂h
∂v
)T = T (∂s

∂v
)T + v(∂P

∂v
)T   = T (∂P

∂T
)v + v(∂P

∂v
)T 

 Also for the second first derivative use Eq.13.28 

       (∂h
∂T

)v = T(∂s
∂T

)v + v(∂P
∂T

)v = Cv + v(∂P
∂T

)v 
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13.36 

From Eqs. 13.23 and 13.24 and the knowledge that Cp > Cv what can you 

conclude about the slopes of constant v and constant P curves in a T-s diagram? 
Notice that we are looking at functions T(s, P or v given). 

 Solution: 
 The functions and their slopes are: 

   Constant v:    T(s)   at that v   with slope  






∂T

∂s v
 

   Constant P:    T(s)   at that P with slope  






∂T

∂s P
 

 Slopes of these functions are now evaluated using Eq.13.23 and Eq.13.24 as 
    

     






∂T

∂s P
 = 















∂s

∂T P

-1
 = 

T
Cp

 

     






∂T

∂s v
 = 















∂s

∂T v

-1
 = 

T
Cv

 

 Since we know Cp > Cv then it follows that T/Cv  >  T/Cp and therefore 

      






∂T

∂s v
   >   







∂T

∂s P
 

 which means that constant v-lines are steeper than constant P lines in a T-s 
diagram. 
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13.37 

 Derive expressions for (∂T/∂v)u and for (∂h/∂s)v that do not contain the properties 
h, u, or s. Use Eq. 13.30 with du = 0. 

 (∂T
∂v

)u = - (∂u
∂v

)T/(∂u
∂T

)v = 
P - T(∂P

∂T
)v

Cv
 (see Eqs. 13.33 and 13.34) 

 As dh = Tds + vdP  => (∂h
∂s

)v = T + v(∂P
∂s

)v = T - v(∂T
∂v

)s (Eq.13.20) 

 But    (∂T
∂v

)s = - (∂s
∂v

)T/(∂s
∂T

)v = - 

T(∂P
∂T

)v

Cv
  (Eq.13.22) 

 ⇒  (∂h
∂s

)v = T  +  
vT
Cv

 (∂P
∂T

)v 
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13.38 

 Develop an expression for the variation in temperature with pressure in a constant 
entropy process, (∂T/∂P)

s
, that only includes the properties P–v–T and the specific 

heat, Cp. Follow the development for Eq.13.32. 

   (∂T
∂P

)s = - 

(∂s
∂P

)T

(∂s
∂T

)P

 = - 

-(∂v
∂T

)P

(C
P
/T)  = 

T
C

P
 (∂v

∂T
)P 

{(∂s
∂P

)T = -(∂v
∂T

)P, Maxwell relation Eq. 13.23 and the other is Eq.13.27} 
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13.39 

Use Eq. 13.34 to get an expression for the derivative (∂T/∂v)s. What is the general 

shape of a constant s process curve in a T-v diagram? For an ideal gas can you 
say a little more about the shape? 

 
 Equation 13.34 says 

    ds = Cv 
dT
T   + (∂P

∂T
)v dv 

 so then in a constant s process we have ds = 0 and we find 

    (∂T
∂v

)s = − 
T
Cv

 (∂P
∂T

)v 

 As T is higher the slope is steeper (but negative) unless the last term (∂P/∂T)v 

counteracts. If we have an ideal gas this last term can be determined 

  P = RT/v     ⇒    (∂P
∂T

)v = 
R
v 

    (∂T
∂v

)s = − 
T
Cv

 
R
v = − 

P
Cv

 

 and we see the slope is steeper for higher P and a little lower for higher T as Cv is 

an increasing function of T. 
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13.40 

Evaluate the isothermal changes in the internal energy, the enthalpy and the 
entropy for an ideal gas. Confirm the results in Chapters 5 and 8. 

 We need to evaluate  duT, dhT  and dsT for an ideal gas:   P = RT/v. 

 From Eq.13.31 we get 

   duT = [ T  (∂P
∂T

)v – P ] dvT = [ T ( 
R
v ) – P ] dvT = [ P – P] dvT = 0 

 From Eq.13.27 we get using v = RT/P  

   dhT = [ v – T (∂v
∂T

)P ] dPT = [ v – T ( 
R
P ) ] dPT = [ v – v ] dPT = 0 

 These two equations confirms the statements in chapter 5 that u and h are 
functions of T only for an ideal gas. 

 From eq.13.32 or Eq.13.34 we get  

         dsT = – (∂v
∂T

)P dPT  =  (∂P
∂T

)v dvT  

    = – 
R
P dPT  =  

R
v dvT 

 so the change in s can be integrated to find 

    s2 – s1 = –R ln 
P2
P1

 = R ln 
v2
v1

            when  T2 = T1 
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Volume Expansivity and Compressibility 
 
13.41 

 Determine the volume expansivity, α
P
, and the isothermal compressibility, β

T
, for 

water at 20°C, 5 MPa and at 300°C, and 15 MPa using the steam tables. 

Water at 20oC, 5 MPa (compressed liquid) 

  α
P
 =  

1
v(

∂v
∂T

)P ≈  
1
v(

∆v
∆T

)P Estimate by finite difference. 

Using values at 0oC, 20oC and 40oC, 

 

 α
P
 ≈  

1
0.000 9995 

0.001 0056 - 0.000 9977
40 - 0   = 0.000 1976 oC-1 

 β
T
 = - 

1
v(

∂v
∂P

)T ≈ - 
1
v(

∆v
∆P

)T 

 Using values at saturation, 5 MPa and 10 MPa, 

  

 β
T
 ≈ - 

1
0.000 9995 

0.000 9972 - 0.001 0022
10 - 0.0023  = 0.000 50 MPa-1 

 Water at 300oC, 15 MPa (compressed liquid) 

 

  α
P
 ≈  

1
0.001 377 

0.001 4724 - 0.001 3084
320 - 280   = 0.002 977 oC-1 

  β
T
 ≈ - 

1
0.001 377 

0.001 3596 - 0.001 3972
20 - 10  = 0.002 731 MPa-1  
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13.42 

What are the volume expansivity αp, the isothermal compressibility βT, and the 

adiabatic compressibility βs for an ideal gas? 

 
 The volume expansivity from Eq.13.37 and ideal gas  v = RT/P gives 

   αp =  
1
v(

∂v
∂T

)P =  
1
v ( 

R
P ) = 

1
T 

 The isothermal compressibility from Eq.13.38 and ideal gas gives 

   β
T
 = − 

1
v(

∂v
∂P

)T = − 
1
v ( − RT P−2 ) = 

1
P 

 The adiabatic compressibility βs from Eq.13.40 and ideal gas 

   βs = − 
1
v(

∂v
∂P

)s  

 From Eq.13.32 we get  for constant s (ds = 0) 

   (∂T
∂P

)s  =  
T
Cp

 (∂v
∂T

)P  =  
T
Cp

 
R
P  =  

v
Cp

 

 and from Eq.13.34 we get 

   (∂v
∂T

)s  =  − 
Cv
T  (∂P

∂T
)v =  − 

Cv
T  

v
R  =  − 

Cv
P  

 Finally we can form the desired derivative 

   (∂v
∂P

)s = (∂v
∂T

)s (
∂T
∂P

)s = − 
Cv
P  

v
Cp

 = − 
v

kP 

   βs = − 
1
v(

∂v
∂P

)s  = (− 
1
v) (− 

v
kP) = 

1
kP =  

1
k β

T
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13.43 

 Find the speed of sound for air at 20°C, 100 kPa using the definition in Eq. 13.43 
and relations for polytropic processes in ideal gases. 

From problem 13.14  : c2 = (∂P
∂ρ)s = -v2(∂P

∂v
)s 

For ideal gas and isentropic process, Pvk = constant 

 P = Cv-k   ⇒  
∂P
∂v

 = -kCv-k-1 = -kPv-1 

 c2 = -v2(-kPv-1) = kPv = kRT 

 

 c = kRT = 1.4×0.287×293.15×1000 = 343.2 m/s 

 

  

For every 3 
seconds after the 
lightning the 
sound travels 
about 1 km. 
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13.44 

Assume a substance has uniform properties in all directions with V = LxLyLz and 

show that volume expansivity αp = 3δT. Hint: differentiate with respect to T and 

divide by V. 
 
    V = LxLyLz    

 From Eq.13.37 

         αp =  
1
V(∂V

∂T
)P  = 

1
LxLyLz

 (
∂ LxLyLz

∂T
)P 

   = 
LyLz

LxLyLz
 (

∂ Lx

∂T
)P + 

LxLz
LxLyLz

 (
∂ Ly

∂T
)P + 

LxLy
LxLyLz

 (
∂ Lz

∂T
)P  

   = 
1

Lx
 (

∂ Lx

∂T
)P + 

1
Ly

 (
∂ Ly

∂T
)P + 

1
Lz

 (
∂ Lz

∂T
)P 

   = 3 δT  

 This of course assumes isotropic properties (the same in all directions). 
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13.45 

 A cylinder fitted with a piston contains liquid methanol at 20°C, 100 kPa and 
volume 10 L. The piston is moved, compressing the methanol to 20 MPa at 
constant temperature. Calculate the work required for this process. The isothermal 

compressibility of liquid methanol at 20°C is 1.22 × 10-9 m2/N. 

 1w2 = ⌡⌠
1

2

 Pdv = 
⌡

⌠

 P(∂v
∂P

)T 
dPT = -⌡⌠

1

2

 vβ
T

 PdPT 

For v ≈ constant  &  βT ≈ constant   the integral can be evaluated 

 1w2 = - 
vβ

T

2  (P
2
2 - P

2
1) 

For liquid methanol, from Table A.4:   ρ = 787 m3/kg 

 V
1
 = 10 L,    m = 0.01 × 787 = 7.87 kg 

 1W2 = 
0.01×1220

2  [(20)2 - (0.1)2]  = 2440 J = 2.44 kJ 
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13.46 

Use Eq. 13.32 to solve for (∂T/∂P)s in terms of T, v, Cp and αp. How large a 

temperature change does 25oC water (αp = 2.1 × 10-4 K-1) have, when 

compressed from 100 kPa to 1000 kPa in an isentropic process?   

  

 From Eq.13.32 we get for constant s (ds = 0) and Eq.13.37 

    (∂T
∂P

)s =  
T
Cp

 (∂v
∂T

)P  =  
T
Cp

 αp v 

 Assuming the derivative is constant for the isentropic compression we estimate 
with heat capacity from Table A.3 and v from B.1.1 

    ∆Ts = (∂T
∂P

)s ∆Ps = 
T
Cp

 αp v ∆Ps 

            = 
273.15 + 25

4.18  × 2.1 × 10-4 × 0.001003 × (1000 – 100)  

            = 0.013 K                   barely measurable. 
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13.47 

 Sound waves propagate through a media as pressure waves that cause the media 
to go through isentropic compression and expansion processes. The speed of 

sound c is defined by c2 = (∂P/∂ρ)
s
 and it can be related to the adiabatic 

compressibility, which for liquid ethanol at 20°C is 9.4 × 10-10 m2/N. Find the 
speed of sound at this temperature. 

 

 c2 = (∂P
∂ρ)s = −v2(∂P

∂v
)s  = 

1

-
1
v(

∂v
∂P

)s ρ
 = 

1
β

s
ρ 

 From Table A.4 for ethanol,     ρ = 783 kg/m3 

 ⇒ c = ( 1

940×10-12×783
)1/2

 = 1166 m/s 
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13.48 

For commercial copper at 25oC (see table A.3) the speed of sound is about 4800 
m/s. What is the adiabatic compressibility βs? 

 

 From Eq.13.43 and Eq.13.40 

    c2 = (∂P
∂ρ)s = −v2(∂P

∂v
)s  = 

1

-
1
v(

∂v
∂P

)s ρ
 = 

1
β

s
ρ 

 Then we get using density from Table A.3 

    βs = 
1

c2ρ = 
1

48002 × 8300
  

s2 m3

m2 kg
 = 

1000
48002 × 8300

  
1

kPa 

         = 5.23 × 10−9  kPa−1 

 

  

Cu 
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13.49 

 Consider the speed of sound as defined in Eq. 13.43. Calculate the speed of sound 
for liquid water at 20°C, 2.5 MPa, and for water vapor at 200°C, 300 kPa, using 
the steam tables. 

 From Eq. 13.43:     c2 = (∂P
∂ρ)s = -v2(∂P

∂v
)s 

 Liquid water at 20oC, 2.5 MPa, assume 

  (∂P
∂v

)s ≈ (∆P
∆v

)
T
 

 Using saturated liquid at 20oC and compressed liquid at 20oC, 5 MPa, 

 c2 = -(0.001 002+0.000 9995
2 )2( 5-0.0023

0.000 9995-0.001 002) =  2.002×106 

  =>        c  =  1415 m/s 

 Superheated vapor water at 200oC, 300 kPa 

   v = 0.7163 m3/kg,   s = 7.3115 kJ/kg K 

 At P = 200 kPa &  s = 7.3115 kJ/kg K:   T = 157oC,     v = 0.9766 m3/kg 

 At P = 400 kPa &  s = 7.3115 kJ/kg K:   T = 233.8oC,  v = 0.5754 m3/kg 

  c2 = -(0.7163)2 ( 0.400-0.200
0.5754-0.9766) = 0.2558 × 106 m2/s2 

   =>        c  = 506 m/s 
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13.50 

Soft rubber is used as a part of a motor mounting. Its adiabatic bulk modulus is Bs 

= 2.82 × 106 kPa, and the volume expansivity is αp = 4.86 × 10-4 K-1. What is the 

speed of sound vibrations through the rubber, and what is the relative volume 
change for a pressure change of 1 MPa? 

 

 From Eq.13.43 and Eq.13.40 

    c2 = (∂P
∂ρ)s = −v2(∂P

∂v
)s  = 

1

-
1
v(

∂v
∂P

)s ρ
 = 

1
β

s
ρ = 

B
s

ρ  

        = 2.82 × 106 × 1000 Pa / 1100 kg/m3 = 2.564 × 106  m2/s2 

    c = 1601 m/s 

 If the volume change is fast it is isentropic and if it is slow it is isothermal. We 
will assume it is isentropic 

       
1
V(∂V

∂P
)s  = −βs = − 

1
Bs

  

 then 

    
∆V
V  = − 

∆P
Bs

 =  − 
1000

2.82 × 106 = −3.55 × 10−4  
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13.51 

Liquid methanol at 25oC has an adiabatic compressibility of  1.05 × 10-9 m2/N. 
What is the speed of sound? If it is compressed from 100 kPa to 10 MPa in an 
insulated piston/cylinder, what is the specific work? 

 

 From Eq.13.43 and Eq.13.40 and the density from table A.4 

    c2 = (∂P
∂ρ)s = −v2(∂P

∂v
)s  =  

1
β

s
ρ = 

1

1.05 × 10-9 × 787
  

        = 1.210 × 106  m2/s2  

  c  = 1100 m/s 
 The specific work becomes 

  w = ⌡⌠P dv = ⌡⌠P (-β
s
v ) dP = − ⌡⌠ β

s
v P dP = −βs v ⌡⌠

1

2

 P dP 

      = −βs v 0.5 (P
2
2 – P

2
1)  

    = −1.05 × 10-9 m2/N × 
0.5
787 m3/kg × (10 0002 – 1002) × 10002 Pa2 

    = −66.7 J/kg 



  Sonntag, Borgnakke and van Wylen 

 
13.52 

Use Eq. 13.32 to solve for (∂T/∂P)s in terms of T, v, Cp and αp. How much higher 

does the temperature become for the compression of the methanol in Problem 

13.51?  Use αp = 2.4 × 10-4 K-1 for methanol at 25oC. 

 

 From Eq.13.32 we get for constant s (ds = 0) and Eq.13.37 

    (∂T
∂P

)s =  
T
Cp

 (∂v
∂T

)P  =  
T
Cp

 αp v 

 Assuming the derivative is constant for the isentropic compression we estimate 
with heat capacity and density (v = 1/ρ) from Table A.4 

   ∆Ts = (∂T
∂P

)s ∆Ps = 
T
Cp

 αp v ∆Ps 

          = 
298.15
2.55  

K kg K
kJ  × 2.4 × 10-4 K-1 × 

1
787 

m3

kg × (10 000 – 100) kPa 

          = 0.353 K 
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Equations of State 
 
13.53 
 Use the equation of state as shown in Example 13.3 where changes in enthalpy 

and entropy were found. Find the isothermal change in internal energy in a similar 
fashion; do not compute it from enthalpy.  

 
 The equation of state is 

     
Pv
RT = 1 – C’ 

P
T4 

 and to integrate for changes in u from eq.13.31 we it explicit in P as 

           P = T4 ( 
v
R T3 + C’ )−1 

 Now perform the partial derivative of P 

  (∂P
∂T

)v = 4 T3 ( 
v
R T3 + C’ )−1 − T4 ( 

v
R T3 + C’ )−2 3 

v
R T2 

   = 4 
P
T − 

P2

T4 3 
v
R T2 = 4 

P
T − 3 

P
T × 

Pv
RT =  

P
T [ 4 – 3 

Pv
RT ]  

 Substitute into Eq.13.31 

  duT = [ T  (∂P
∂T

)v – P ] dvT = [ P( 4 – 3 
Pv
RT) – P ] dvT 

         = 3 P ( 1 –  
Pv
RT)  dvT = 3 P C’ 

P
T4  dvT 

The P must be eliminated in terms of v or the opposite, we do the latter as from 
the equation of state 

  v = 
RT
P  – C’ R 

1

T3         ⇒ dvT = – 
RT

P2  dPT 

so now 

    duT = 3 C’ 
P2

T4 dvT = – 3 C’ R 
1

T3  dPT 

 and the integration becomes 

   u2 – u1 =  − 3 C’ R T−3 (P2 – P1) 
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13.54 
 Evaluate changes in an isothermal process for u, h and s for a gas with an 

equation of state as P (v − b) = RT. 
 

 From Eq.13.31 we get 

   duT = [ T  (∂P
∂T

)v – P ] dvT = [ T ( 
R

v – b ) – P ] dvT = [ P – P] dvT = 0 

 From Eq.13.27 we get using v = b + RT/P  

   dhT = [ v – T (∂v
∂T

)P ] dPT = [ v – T ( 
R
P ) ] dPT =  b dPT  

 From eq.13.32 or Eq.13.34 we get  

         dsT = – (∂v
∂T

)P dPT  =  (∂P
∂T

)v dvT  

    = – 
R
P dPT  =  

R
v – b dvT 

 Now the changes in u, h and s can be integrated to find 

    u2 – u1 = 0 

    h2 – h1 = ⌡⌠ b dP = b(P2 – P1) 

    s2 – s1 = –R ln 
P2
P1

 = R ln 
v2 – b

v1 – b         
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13.55 

 Two uninsulated tanks of equal volume are connected by a valve. One tank 
contains a gas at a moderate pressure P

1
, and the other tank is evacuated. The 

valve is opened and remains open for a long time. Is the final pressure P
2
 greater 

than, equal to, or less than P
1
/2?  Hint: Recall Fig. 13.5. 

 

 Assume the temperature stays constant then for an ideal gas the pressure will be 
reduced to half the original pressure. For the real gas the compressibility factor 
maybe different from 1 and then changes towards one as the pressure drops. 

 
  

V
A

 = V
B
   ⇒   V

2
 = 2V

1
,   T

2
 = T

1
 = T 

         
P

2

P
1
 = 

V
1

V
2
  
Z

2

Z
1
  
mRT
mRT  =  

1
2 

Z
2

Z
1
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���������
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��������
��������A B 

GAS EVAC.  

 
If T < T

B
,   Z

2
 > Z

1
   ⇒   

P
2

P
1
 > 

1
2 

If T > T
B
,   Z

2
 < Z

1
   ⇒   

P
2

P
1
 < 

1
2 

P 

Z 

1 

1 

2 

2 
1.0 

T > T B

T < T B 

P 1 P 2  
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13.56 

 Determine the reduced Boyle temperature as predicted by an equation of state (the 
experimentally observed value for most substances is about 2.5), using the van 
der Waals equation and the Redlich–Kwong equation. Note:  It is helpful to use 
Eqs. 13.47 and 13.48 in addition to Eq. 13.46 

The Boyle temp. is that T at which     lim
P→0

(∂Z
∂P

)T = 0 

 But lim
P→0

(∂Z
∂P

)T = lim
P→0 

Z-1
P-0 = 

1
RT 

lim
P→0(v - 

RT
P ) 

van der Waals:      P = 
RT
v-b − 

a

v2 

    multiply by 
v-b
P , get 

    v-b = 
RT
P  - 

a(v-b)

Pv2     or    v - 
RT
P  = b − 

a(1-b/v)
Pv  

    &    RT × lim
P→0

(∂Z
∂P

)T  = b −  
a(1-0)

RT   = 0    only at T
Boyle

 

    or    T
Boyle

 = 
a

Rb = 
27
8  T

C
 = 3.375 TC 

Redlich-Kwong:        P = 
RT
v-b − 

a

v(v+b)T1/2 

    as in the first part, get 

    v - 
RT
P  = b − 

a(1-b/v)

Pv(1+b/v)T1/2 

    & RT × lim
P→0

(∂Z
∂P

)T  = b − 
a(1-0)

Pv(1+0)T1/2  = 0     only at T
Boyle

 

    or    T
3/2
Boyle = 

a
Rb = 

0.427 48 R2
 T

5/2
C

RP
C

×
P

C

0.08 664 R T
C
 

    T
Boyle

 = (0.427 48
0.086 64)

2/3
T

C
 = 2.9 TC 
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13.57 
 Develop expressions for isothermal changes in internal energy, enthalpy and 

entropy for a gas obeying the van der Waals equation of state. 
 

van der Waals equation of state:       P = 
RT
v-b − 

a

v2 

    (∂P
∂T

)v = 
R

v-b 

    (∂u
∂v
)T = T(∂P

∂T
)v - P = 

RT
v-b − 

RT
v-b + 

a

v2 

    (u
2
-u

1
)T = 

⌡

⌠

1

2

 [T(∂P
∂T

)v - P]dv = 
⌡

⌠

1

2

 
a

v2dv = a(
1
v

1
 − 

1
v

2
) 

    (h
2
-h

1
)T = (u

2
-u

1
)T + P

2
v

2
 - P

1
v

1
  =  P

2
v

2
 − P

1
v

1
 + a(

1
v

1
 − 

1
v

2
) 

    (s
2
-s

1
)T = 

⌡

⌠

1

2

(∂P
∂T

)v dv = 
⌡
⌠

1

2

 
R

v-b dv = R ln(v
2
-b

v
1
-b) 
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13.58 
 Develop expressions for isothermal changes in internal energy, enthalpy and 

entropy for a gas obeying Redlich-Kwong equation of state. 
 

Redlich-Kwong equation of state:      P = 
RT

v − b
 − 

a

v(v + b)T1/2 

   (∂P
∂T

)v = 
R

v − b + 
a

2v(v + b)T3/2 

From eq.13.31 

    (u
2
 − u

1
)T = 

⌡

⌠

1

2

 
3a

2v(v + b)T1/2 dv = 
−3a

2bT1/2  ln[(
v

2
 + b

v
2

)(
v1

v1 + b)] 

We find change in h from change in  u, so we do not do the derivative in 
eq.13.27. This is due to the form of the EOS. 

    (h
2
 − h

1
)T = P

2
v

2
 − P

1
v

1
 − 

3a

2bT1/2 ln[(v2 + b
v2

)( v1

v1 + b)] 

Entropy follows from Eq.13.35 

    (s
2
 − s

1
)T = 

⌡

⌠

1

2

[ R
v − b

 + 
 a/2

v(v + b)T3/2]dv 

    = R ln(v2 − b

v1 − b
) −  

a

2bT3/2  ln[(v2 + b
v2

)( v1

v1 + b)] 
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13.59 

Consider the following equation of state, expressed in terms of reduced pressure 

and temperature:     Z = 1 + (Pr/14Tr)[1 – 6T
−2
r ].  What does this predict for the 

reduced Boyle temperature? 
 

   Z = 
Pv
RT = 1 + 

 Pr

14 Tr
(1 - 

6

Tr
2) 

 






∂Z

∂P
 
T

 = 
1

14PcTr
(1 - 

6

Tr
2)      =>     Lim

P→0 






∂Z

∂P
 
T

 = 0  at Tboyle 

 (1 - 
6

Tr
2) = 0       Tr = 6 = 2.45 
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13.60 

What is the Boyle temperature for the following equation of state:  P = 
RT
v-b - 

a
v2T

 

 where a and b are constants. 
 

   P = 
RT
v-b − 

a

v2T
 

    Multiplying by   
v-b
P    gives:     v − b = 

RT
P  − 

a(1-b/v)
PvT  

    Using solution from 13.56  for T
Boyle

: 

    lim
P→0

(v − 
RT
P ) = b − 

a(1-0)
RT×T

 = b − 
a

RT2 = 0 at T
Boyle

 

    or     T
Boyle

 = 
a

Rb = 
27
64 

R2T
3
C

PC
 
1
R 

8PC

RTC
 = 

27
8  TC 
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13.61 

 Show that the van der Waals equation can be written as a cubic equation in the 
compressibility factor involving the reduced pressure and reduced temperature as  

   Z3 – (
P

r

8T
r
 + 1) Z2 + 









27 P

r

64 T
2
r

 Z – 
27 P

r
2

 512 T
r
 3

 = 0 

 van der Waals equation, Eq.13.55:       P = 
RT
v-b - 

a

v2 

    a = 
27
64 

R2T
C

2

P
C

    b = 
RT

C

8P
C

 

 multiply equation by 
v2(v-b)

P  

 Get:  v3 - (b + 
RT
P ) v2 + (

a
P) v - 

ab
P  = 0 

 Multiply by   
P3

 R3 T3   and substitute  Z = 
Pv
RT 

 Get: Z3 – (
bP
RT + 1) Z2 + (

aP

 R2T2) Z – (
abP2

R3 T3)  = 0 

 Substitute for a and b, get: 

   Z3 – (
Pr

8Tr
 + 1) Z2 + 







27 Pr

64 T
2
r

 Z – 
27 Pr

2

 512 Tr 
3 = 0 

 Where  Pr = 
P

 Pc
,   Tr = 

T
 Tc
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13.62 
 Determine the second virial coefficient B(T) using the van der Waals equation of 

state. Also find its value at the critical temperature where the experimentally 
observed value is about –0.34 RTc/Pc. 

 

From Eq. 13.51: B(T) = - lim
P→0

 α where Eq. 13.47:  α = 
RT
P  − v 

van der Waals:      P = 
RT
v-b - 

a

v2  which we can multiply by  
v-b
P , get 

   v - b = 
RT
P  − 

a(v-b)

Pv2        or    v − 
RT
P  = b − 

a(1-b/v)
Pv  

Taking the limit for P -> 0 then (Pv -> RT  and   v -> ∞ ) we get : 

  B(T) = b − a/RT = 
RTC

P
C

 ( 
1
8 − 

27 TC

64 T  ) 

where a,b are from Eq.13.59.  At T = TC   then we have 

   B(T
C
) = 

RTC

P
C

( - 
19
64) = −0.297 

RTC

P
C
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13.63 
 Determine the second virial coefficient B(T) using the Redlich-Kwong equation 

of state. Also find its value at the critical temperature where the experimentally 
observed value is about –0.34 RTc/Pc. 

 

From Eq.13.51: B(T) = - lim
P→0

 α where Eq.13.47:  α = 
RT
P  − v 

For Redlich Kwong the result becomes 

  v − 
RT
P  = b − 

a(1- b/v)

Pv(1 + b/v) T1/2     

 Taking the limit for P -> 0 then (Pv -> RT  and   v -> ∞ ) we get : 

  =>     B(T) = b − 
a

RT3/2 

Now substitute Eqs. 13.61 and 13.62 for a and b, 

  B(T) = 
RTC

P
C

 [0.08664 - 0.42748 





TC

T

3/2] 

and evaluated at TC it becomes 

 B(TC) = 
RTC

P
C

 [0.08664 - 0.42748] = −0.341 
RTC

P
C
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13.64 

 One early attempt to improve on the van der Waals equation of state was an 
expression of the form 

     P = 
RT
v-b - 

a

v2T
 

 Solve for the constants a, b, and v
C
 using the same procedure as for the van der 

Waals equation. 

From the equation of state take the first two derivatives of P with v: 

    (∂P
∂v

)T = - 
RT

(v-b)2 + 
2a

v3T
    and    (∂2P

∂v2)T = - 
2RT

(v-b)3 - 
6a

v4T
 

Since both these derivatives are zero at the critical point: 

    - 
RT

(v-b)2 + 
2a

v3T
 = 0       and     - 

2RT

(v-b)3 - 
6a

v4T
 = 0 

Also,           P
C
 = 

RT
C

v
C
-b − 

a

v
2
C T

C

 

    solving these three equations: 

     v
C
 = 3b,    a = 

27
64 

R2T
3
C

P
C

,      b = 
RT

C

8P
C
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13.65 

 Calculate the difference in internal energy of the ideal-gas value and the real-gas 
value for carbon dioxide at the state 20°C, 1 MPa, as determined using the virial 
equation of state, including second virial coefficient terms. For carbon dioxide we 

have: B = -0.128 m3/kmol, T(dB/dT) = 0.266 m3/kmol, both at 20°C. 

virial eq.:    P = 
RT
v  + 

BRT

 v2   ; (∂P
∂T

) v = 
R
v + 

BR

v2  + 
RT

 v2 (
dB
dT) 

 u-u* = -
⌡

⌠

∞

v[ (∂P
∂T

) v - P]dv = - 
⌡

⌠

∞

v
[ 

RT2

 v2  (dB
dT)]dv  = - 

RT
v  [T (dB

dT)] 

Solution of virial equation (quadratic formula): 

 v
−

 = 
1
2 

R
−

T
P  [1 + 1 + 4BP/R

−
T ] where:  

R
−

T
P  = 

8.3145×293.15
1000  = 2.43737 

 v
−

 = 
1
2 × 2.43737  [1 + 1 + 4(-0.128)/2.43737 ] = 2.3018 m3/kmol 

Using the minus-sign root of the quadratic formula results in a compressibility 
factor < 0.5, which is not consistent with such a truncated equation of state. 

  u-u* =  
-8.3145 × 293.15

 2.3018  [0.266] = - 281.7 kJ/kmol 

 



  Sonntag, Borgnakke and van Wylen 

 
13.66 

 Calculate the difference in entropy of the ideal-gas value and the real-gas value 
for carbon dioxide at the state 20°C, 1 MPa, as determined using the virial 
equation of state.  Use numerical values given in Problem 13.65. 

 CO
2
 at T = 20oC, P = 1 MPa 

  s
*
P* - s

P
 =

⌡

⌠

v(P)

RT/P*

(∂P
∂T

)v dv ;  ID Gas,          s
*
P* - s

P
 =

⌡
⌠

v(P)

RT/P*

 
R
v dv = R ln 

P

P* 

  Therefore, at P:    s
*
P - s

P
 = -R ln 

P

P* +
⌡

⌠

v(P)

RT/P*

(∂P
∂T

)v dv  

  virial:     P = 
RT
v  + 

BRT

v2     and      (∂P
∂T

)v = 
R
v + 

BR

v2  + 
RT

v2 (dB
dT) 

  Integrating, 

  s
*
P - s

P
 = -R ln 

P

P* + R ln 
RT

P*v
 + R[B + T(dB

dT)](
1
v - 

P*

RT)  

    = R[ln 
RT
Pv + (B + T(dB

dT))
1
v ] 

  Using values for CO
2
 from solution 13.65, 

  s-
*
P - s-

P
 = 8.3145[ln 

2.437 37
2.3018  +(-0.128 + 0.266) 1

2.3018] 

    = 0.9743 kJ/kmol K 
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13.67 
 A rigid tank contains 1 kg oxygen at 160 K, 4 MPa. Determine the volume of the 

tank assuming we can use the Redlich-Kwong equation of state for oxygen. 
Compare the result with the ideal gas law. 

 
 For the ideal gas law:       Pv = RT       so     v = RT/P 

  v = 0.2598 × 160 / 4000 =  0.0104 m3/kg ; V = mv = 0.0104 m3 
 
 For Redlich-Kwong, Eq.13.57 and oxygen 
  Pc = 5040 kPa;  Tc = 154.6 K;  R = 0.2598 kJ/kg K 

  b = 0.08664 
RTc

Pc
 = 0.08664 × 

0.2598 × 154.6
5040  = 0.000 690 5 m3/kg 

  a = 0.427 48 
R2T

5/2
c

Pc
 = 0.427 48 × 

0.25982 × 154.65/2

5040  = 1.7013  

 

  P = 
RT

v − b
 − 

a

v(v + b)T1/2        trial and error to get v due to nonlinearity 

 

  v = 0.01 m3/kg  ⇒ P = 4465.1 – 1279.9 = 3185.2 kPa   too low 

  v = 0.008 m3/kg  ⇒ P = 5686.85 – 1968.1 = 3718.8 kPa  too low 

  v = 0.0075 m3/kg  ⇒ P = 6104.41 – 2227.43 = 3876.98 kPa 

  v = 0.007 m3/kg  ⇒ P = 6588.16 – 2541.70 = 4046.46 kPa 
  

Now we interpolate between the last two entries and check 

  v = 0.00714 m3/kg ⇒ P = 6445.15 – 2447.3 = 3997.8 kPa   OK 

  V = mv = 0.00714 m3     (69% of the ideal gas value) 
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13.68 
 A flow of oxygen at 230 K, 5 MPa is throttled to 100 kPa in a steady flow 

process. Find the exit temperature and the specific entropy generation using 
Redlich-Kwong equation of state and ideal gas heat capacity. Notice that this 
becomes iterative due to the nonlinearity coupling h, P, v and T. 

 

 C.V. Throttle. Steady single flow, no heat transfer and no work. 

 Energy eq.:    h1 + 0 = h2 + 0         so constant h 

 Entropy Eq.: s1 + sgen = s2               so entropy generation 

 Find the change in h from Eq.13.26 assuming  Cp is constant. 

Redlich-Kwong equation of state:      P = 
RT

v − b
 − 

a

v(v + b)T1/2 

   (∂P
∂T

)v = 
R

v − b + 
a

2v(v + b)T3/2 

From eq.13.31 

    (u2 − u1)T = 
⌡

⌠

1

2

 
3a

2v(v + b)T1/2 dv = 
−3a

2bT1/2 ln[(
v

2
 + b

v
2

)(
v1

v1 + b)] 

We find change in h from change in  u, so we do not do the derivative in 
eq.13.27. This is due to the form of the EOS. 

    (h2 − h1)T = P2v2 − P1v1 − 
3a

2bT1/2 ln[(v2 + b
v2

)( v1

v1 + b)] 

Entropy follows from Eq.13.35 

    (s2 − s1)T = 
⌡

⌠

1

2

[ R
v − b

 + 
 a/2

v(v + b)T3/2]dv 

    = R ln(v2 − b

v1 − b
) −  

a

2bT3/2  ln[(v2 + b
v2

)( v1

v1 + b)] 

 
  Pc = 5040 kPa;  Tc = 154.6 K;  R = 0.2598 kJ/kg K 

  b = 0.08664 
RTc

Pc
 = 0.08664 × 

0.2598 × 154.6
5040  = 0.000 690 5 m3/kg 
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  a = 0.427 48 
R2T

5/2
c

Pc
 = 0.427 48 × 

0.25982 × 154.65/2

5040  = 1.7013  

       We need to find T2 so the energy equation is satisfied 

   h2 – h1 =  h2 – hx + hx – h1  = Cp(T2 – T1) + (h2 − h1)T = 0 

 and we will evaluate it similar to Fig. 13.4, where the first term is done from state 
x to 2 and the second term is done from state 1 to state x (at T1 = 230 K). We do 
this as we assume state 2 is close to ideal gas, but we do not know T2. 
We first need to find v1 from the EOS, so guess v and find P 

  v1 = 0.011 m3/kg     ⇒    P =  5796.0 – 872.35 = 4924    too low 

  v1 = 0.01082 m3/kg     ⇒    P =  5899.0 – 900.7 = 4998.3   OK 
 Now evaluate the change in h along the 230 K from state 1 to state x, that requires 

a value for vx. Guess ideal gas at Tx = 230 K,   

vx = RTx/P2 = 0.2598 × 230/100 = 0.59754 m3/kg 
 From the EOS:      P2 =  100.1157 – 0.3138 = 99.802 kPa  (close) 
 A few more guesses and adjustments gives 

  vx = 0.59635 m3/kg;   P2 =  100.3157 – 0.3151 = 100.0006 kPa    OK 

 (hx − h1)T = Pxvx − P1v1 − 
3a

2bT1/2 ln[(vx + b
vx

)( v1

v1 + b)] 

  = 59.635 – 5000 × 0.01082 – 243.694 ln [
0.59704
0.59635 × 

0.01082
0.01151] 

  = 59.635 – 54.1 + 14.78335 = 20.318 kJ/kg 
 

From energy eq.:    T2 = T1 –  (hx − h1)T/Cp = 230 – 20.318 / 0.922 = 208 K 

Now the change in s is done in a similar fashion, 

 sgen = s2 – s1 = (sx − s1)T + s2 – sx 

        = R ln(vx − b

v1 − b
) −  

a

2bT3/2  ln[(vx + b
vx

)( v1

v1 + b)] + Cp ln 
T2

Tx
  

        = 0.2598 ln(
0.59566

0.0101295) – 0.35318 ln (0.94114) + 0.922 ln(
208
230) 

        = 1.05848 + 0.021425 – 0.092699 

        = 0.987 kJ/kg K 
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Generalized Charts 
 
13.69 

 A 200-L rigid tank contains propane at 9 MPa, 280°C. The propane is then 
allowed to cool to 50°C as heat is transferred with the surroundings. Determine 
the quality at the final state and the mass of liquid in the tank, using the 
generalized compressibility chart, Fig. D.1. 

 Propane C
3
H

8
:  V = 0.2 m3, P

1
 = 9 MPa, T

1
 = 280oC = 553.2 K 

 cool to T
2
 = 50 oC = 323.2 K 

 From Table A.2:    T
C
 = 369.8 K,    P

C
 = 4.25 MPa 

    P
r1

 = 
9

4.25 = 2.118,   T
r1

 = 
553.2
369.8 = 1.496     From Fig. D.1:   Z

1
 = 0.825 

    v
2
 = v

1
 = 

Z
1
RT

1

P
1

 = 
0.825×0.188 55×553.2

9 000  = 0.00956 m3/kg 

 From Fig. D.1 at T
r2

 = 0.874, 

    P
G2

 = 0.45 × 4250 = 1912 kPa 

    v
G2

 = 0.71 × 0.188 55 × 323.2/1912 = 0.02263 m3/kg 

    v
F2

 = 0.075 ×0.188 55× 323.2/1912 = 0.00239 m3/kg 

 0.00956 = 0.002 39 + x
2
(0.02263 - 0.00239)    =>       x

2
 = 0.354 

 m
LIQ 2

 = (1-0.354)×0.2/0.00956 = 13.51 kg  

 

  

These tanks 
contain liquid 
propane. 
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13.70 

 A rigid tank contains 5 kg of ethylene at 3 MPa, 30°C. It is cooled until the 
ethylene reaches the saturated vapor curve. What is the final temperature? 

 
 

�������������������������������
�������������������������������
�������������������������������2 4 C  H

T

v

1

2

 

V = const   m = 5 kg 

P
1
 = 3 MPa   T

1
 = 30 oC = 303.2 K 

cool to x
2
 = 1.0 

P
r1

 = 
3

5.04 = 0.595,    T
r1

 = 
303.2
282.4 = 1.074 

 
Fig. D.1:    Z

1
 =  0.82 

  P
r2

 = P
r1

 
Z

2
T

r2

Z
1
T

r1
 = 0.595 

Z
G2

T
r2

0.82×1.074
 = 0.6756 Z

G2
T

r2
 

Trial & error: 

     T
r2

         Z
G2

        P
r2

        P
r2 CALC

 

   0.866     0.72       0.42       0.421        ~ OK       =>  T
2
 = 244.6 K 



  Sonntag, Borgnakke and van Wylen 

 
13.71 

 Refrigerant-123, dichlorotrifluoroethane, which is currently under development as 
a potential replacement for environmentally hazardous refrigerants, undergoes an 
isothermal steady flow process in which the R-123 enters a heat exchanger as 
saturated liquid at 40°C and exits at 100 kPa. Calculate the heat transfer per 
kilogram of R-123, using the generalized charts, Fig. D.2 

 

 R-123:  M = 152.93,  TC = 456.9 K,  PC = 3.67 MPa 

 
 

1 2 
Heat exchanger 

 

 

T1 = T2 = 40 oC,   x1 = 0 
P2 = 100 kPa 
 

 

 Tr1 = Tr2 = 313.2/456.9 = 0.685,     Pr2 = 0.1/3.67 = 0.027 

 From Fig. D.2:    Pr1 = 0.084,    (h* − h)1/RTC = 4.9 

From D.1:   saturated    P1 = 0.084×3670 = 308 kPa 

 P2 < P1 with no work done, so process is irreversibel.  

Energy Eq.:     q + h1 = h2,     Entropy Eq.:    s1 +  ∫ dq/T + sgen = s2,   sgen > 0 

 From Fig. D.2:     (h*- h)2/RTC = 0.056 

 q = h2 - h1 = 8.3145 × 456.9 [-0.056 + 0 + 4.90]/152.93 = 120.4 kJ/kg 
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 An ordinary lighter is nearly full of liquid propane with a small amount of vapor, 

the volume is 5 cm3, and temperature is 23°C. The propane is now discharged 
slowly such that heat transfer keeps the propane and valve flow at 23°C. Find the 
initial pressure and mass of propane and the total heat transfer to empty the 
lighter. 

 Propane C
3
H

8
        T

1
 = 23oC = 296.2 K = constant,     x1 = 0.0 

     V
1
 = 5 cm3 = 5×10-6 m3,     T

r1
 = 296.2/369.8 = 0.804     

 From Figs. D.1 and D.2, 

    P
1
 = P

G T1
 = 0.25×4.25 = 1.063 MPa,     Z

1
 = 0.04  

    (h
*
1-h

1
) = 0.188 55×369.8×4.51 = 314.5 

  m
1
 = 

P
1
V

1

Z
1
RT

1
 = 

1063×5×10-6

0.04×0.188 55×296.2
 = 0.00238 kg 

 State 2:  Assume vapor at 100 kPa, 23oC  

       Therefore, m
2
 much smaller than m

1
 ( ∼ 9.0 × 10-6 kg) 

      Q
CV

  = m
2
u

2 
- m

1
u

1
 + m

e
h

e
  

       = m
2
h

2
 - m

1
h

1
 - (P

2
-P

1
)V + (m

1
-m

2
)h

e
 

   = m
2
(h

2
-h

e
) + m

1
(h

e
-h

1
) - (P

2
-P

1
)V  

    (h
e
 - h

1
) = 0 + 0 + 314.5 

    Q
CV

 = ≈ 0 + 0.00238(314.5) - (100-1063)×5×10-6  = 0.753 kJ 

 

  

Actual lighters uses 
butane and some 
propane. 
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 A piston/cylinder contains 5 kg of butane gas at 500 K, 5 MPa. The butane 
expands in a reversible polytropic process to 3 MPa, 460 K. Determine the 
polytropic exponent n and the work done during the process. 

 

C
4
H

10
   m = 5 kg   T

1
 = 500 K   P

1
 = 5 MPa 

 Rev. polytropic process:      P
1
V

n
1 = P

2
V

n
2  

 T
r1

 = 
500

425.2 = 1.176,   P
r1

 = 
5

3.8 = 1.316     From Fig. D.1:    Z
1
 = 0.68 

 T
r2

 = 
460

425.2 = 1.082,   P
r2

 = 
3

3.8 = 0.789     From Fig. D.1:    Z
2
 = 0.74 

    V
1
 = 

mZRT
P  = 

5 × 0.68 × 0.1430 × 500
5000  = 0.0486 m3 

 V
2
 = 

mZRT
P  = 

5 × 0.74 × 0.1430 × 460
3000  = 0.0811 m3 

Solve for the polytropic exponent, n, as 

 n = ln(P
1
/P

2
) / ln(V

2
/V

1
) = ln (

5
3) / ln (

0.0811
0.0486) = 0.9976 

 
1
W

2
 = ⌡⌠

1

2

 PdV = 
P2V2 - P1V1

1-n  = 
3000×0.0811 - 5000×0.0486

1 - 0.9976   = 125 kJ 
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 Calculate the heat transfer during the process described in Problem 13.73. 

From solution 13.73, 

 V
1
 = 0.0486 m3,   V

2
 = 0.0811 m3,    

1
W

2
 = 125 kJ 

 T
r1

 = 
500

425.2 = 1.176,   P
r1

 = 
5

3.8 = 1.316     From Fig. D.1:    Z
1
 = 0.68 

T
r2

 = 1.082,  P
r2

 = 0.789,  T
2
 = 460 K 

 From Fig. D.2:    (h*- h)
1
 = 1.30 RT

C
 ,    (h*- h)

2
 = 0.90 RT

C
 

 h
*
2 - h

*
1 = 1.716(460 - 500) = -83.1 kJ/kg 

 h
2
 - h

1
 = -83.1 + 

8.3145×425.2
58.124  (-0.90 + 1.30)  = -58.8 kJ/kg 

 U
2
 - U

1
 = m(h

2
 - h

1
) - P

2
V

2
 + P

1
V

1
 

    = 5(-58.8) – 3000 × 0.0811 + 5000 × 0.0486  = -288.3 kJ 

 
1
Q

2
 = U

2
 - U

1
 + 

1
W

2
 = -174.3 kJ 
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 A cylinder contains ethylene, C
2
H

4
, at 1.536 MPa, −13°C. It is now compressed 

in a reversible isobaric (constant P) process to saturated liquid. Find the specific 
work and heat transfer. 

Ethylene C
2
H

4
 ;   P

1
 = 1.536 MPa = P

2
 ,    T

1
 = -13oC = 260.2 K 

 State 2: saturated liquid, x2 = 0.0          

    T
r1

 = 
260.2
282.4 = 0.921   P

r1
 = P

r2
 = 

1.536
5.04  = 0.305  

 From Figs. D.1, D.2: Z
1
 = 0.85 , (h

*
1-h

1
)/RT

c
 = 0.40  

    v
1
 = 

Z
1
RT

1

P
1

 = 
0.85×0.29637×260.2

1536  = 0.042675 

    (h
*
1-h

1
) = 0.296 37×282.4×0.40 = 33.5 

 From Figs. D.1, D.2: T
2
 = 0.824×282.4 = 232.7 K 

    Z
2
 = 0.05 ,   (h

*
2-h

2
)/RT

c
 = 4.42 

    v
2
 = 

Z
2
RT

2

P
2

 = 
0.05×0.29637×232.7

1536  = 0.002245 

    (h
*
2-h

2
) = 0.296 37×282.4×4.42 = 369.9  

    (h
*
2-h

*
1) = C

P0
(T

2
-T

1
) = 1.5482(232.7-260.2) = -42.6  

 w
12

 = ⌡⌠ Pdv = P(v
2
-v

1
) = 1536(0.002 245-0.042 675)  = -62.1 kJ/kg 

 q
12

  = (u
2
-u

1
) + w

12
 = (h

2
-h

1
)  = -369.9  - 42.6 + 33.5 =  -379 kJ/kg 
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 Carbon dioxide collected from a fermentation process at 5°C, 100 kPa should be 
brought to 243 K, 4 MPa in a steady flow process. Find the minimum amount of 
work required and the heat transfer. What devices are needed to accomplish this 
change of state? 

    T
ri
 = 

278.2
304.1 = 0.915,    P

ri
 = 

100
7380 = 0.0136 

 From D.2 and D.3 : (h*-h)
ri

/RT
C
 = 0.02,   (s*-s)ri/R = 0.01   

    T
re

 = 
243

304.1 = 0.80,    P
re

 = 
4

7.38 = 0.542   

From D.2 and D.3:      (h*-h)
re

/RT
C
 = 4.5 ,     (s*-s)re/R = 4.74 

 (h
i
-h

e
) = - (h

*
i -h

i
) + (h

*
i -h

*
e) + (h

*
e-h

e
)  

   = - 0.188 92×304.1×0.01 + 0.8418(278.2-243)  

   + 0.188 92×304.1×4.5    = 287.6 kJ/kg 

  (s
i
-s

e
) = - (s

*
i -s

i
) + (s

*
i -s

*
e) + (s

*
e-s

e
) 

          = - 0.188 92×0.01 + 0.8418 ln(278.2/243)  

   - 0.188 92 ln(0.1/4) + 0.188 92×4.74  = 1.7044 kJ/kg K 

    wrev = (h
i
-h

e
) -T

0
(s

i
-s

e
)  = 287.6 - 278.2(1.7044) = -186.6 kJ/kg 

    qrev = (h
e
-h

i
) + wrev  = -287.6 -186.6 = -474.2 kJ/kg 

We need a compressor to bring the pressure up and a cooler to bring the 
temperature down. Cooling it before compression and intercooling between 
stages in the compressor lowers the compressor work. In an actual set-up we 
require more work than the above reversible limit. 
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 Consider the following equation of state, expressed in terms of reduced pressure 
and temperature: 

    Z = 1 + 
 Pr

14 Tr
 (1 - 

 6

 Tr
2 ) 

 What does this equation predict for enthalpy departure from the ideal gas value at 
the state Pr = 0.4, Tr = 0.9 ?   

   Z = 
Pv
RT = 1 + 

 Pr

14 Tr
(1 - 

6

Tr
2) 

 v = 
RT
P  + 

RTc

14Pc
 (1 - 

6Tc
2

T2 ) ;     






∂v

∂T p
 = 

R
P + 

12RT
3
c

14PcT
3 

 v - T 






∂v

∂T p
 = 

RTc

14Pc
 - 

18RT
3
c

14PcT
2  

Now Eq.13.27 is integrated with limits similar to Eq.13.62 

 h - h* = ⌡⌠
0

P

 [v - T 






∂v

∂T p
 ] dP = 

RTc

14  (1 − 
18

Tr
2) Pr = 0.606 RTc 
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 Consider the following equation of state, expressed in terms of reduced pressure 
and temperature: 

    Z = 1 + 
 Pr

14 Tr
 (1 - 

 6

 Tr
2 ) 

 What does this equation predict for entropy departure from the ideal gas value at 
the state Pr = 0.4, Tr = 0.9 ?   

 

  The entropy departure is the change in s for a real gas minus the change in s 
for an ideal gas, so from Eq.13.32 and eq.8.23 we get 

    d(s - s*) = Cp
dT
T  - 







∂v

∂T
 
p
 dP - [ Cp

dT
T  - 

R
P dP] = [R

P − 






∂v

∂T
 
p
] dP 

Solve now for v from the compressibility factor ( Z = Pv/RT) to get 

   Z = 
Pv
RT = 1 + 

 Pr

14 Tr
(1 − 

6

Tr
2) 

 v = 
RT
P  + 

RTc

14Pc
 (1 − 

6Tc
2

T2 ) ;     






∂v

∂T
 
p
 = 

R
P + 

12RT
3
c

14PcT
3 

 s - s* = ⌡⌠
0

P

 [R
P - 







∂v

∂T
 
p
] dP =  ⌡⌠

0

P

 [ − 
12RT

3
c

14PcT
3 ] dP = − 

6
7 R 

Pr

T
3
r

 

Evaluate at  Pr = 0.4, Tr = 0.9 to get 

s - s* = −0.4703 R 
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 A flow of oxygen at 230 K, 5 MPa is throttled to 100 kPa in a steady flow 
process. Find the exit temperature and the entropy generation. 

 
  

���1 2

 

      Process:  Throttling 

      Small surface area:  Q
.
 = 0;    

      No shaft:      W
.

 = 0   

      Irreversible:       S
.
gen > 0 

 

 We will soove the problem using generalized charts. 

 Tri = 
230

154.6 = 1.488,   Pri = 
5

5.04 = 0.992,    Pre = 
0.1
5.04 = 0.02 

 From D.2:       (h
*
i -hi) = 0.2598 × 154.6 × 0.50 = 20.1 

Energy Eq.:    (he- hi) = 0 = - (h
*
e-he) + (h

*
e-h

*
i ) + (h

*
i -hi)  

Assume  Te = 208 K , Tre = 1.345:     (h
*
e-h

*
i ) = 0.922(208 - 230) = -20.3 

 From D.2:    (h
*
e-h

e
) = 0.2598 × 154.6 × 0.01 = 0.4  

Check first law    (h
e
- h

i
) = -0.4 -20.3 + 20.1 ≈ 0  OK    =>    T

e
 = 208 K  

 From D.3, 

   (s
*
i -s

i
) = 0.2598×0.25 = 0.0649    and     (s

*
e-s

e
) = 0.2598×0.01 = 0.0026 

    (s
*
e-s

*
i ) = 0.9216 ln 

208
230 - 0.2598 ln 

0.1
5  = 0.9238 kJ/kg K 

 sgen = (s
e
- s

i
) = -0.0026 + 0.9238 + 0.0649 = 0.9861 kJ/kg K 
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 A cylinder contains ethylene, C2H4, at 1.536 MPa, −13°C. It is now compressed 
isothermally in a reversible process to 5.12 MPa. Find the specific work and heat 
transfer. 

 Ethylene C2H4  P1 = 1.536 MPa , T2 = T1 = -13oC = 260.2 K 

    Tr2 = Tr1 = 260.2 / 282.4 = 0.921  ,  Pr1 = 1.536 / 5.04 = 0.305 

From D.1, D.2 and D.3:    Z1 = 0.85 

   (h
*
1-h1) = 0.2964×282.4×0.40 = 33.5   and       (s

*
1-s1) = 0.2964×0.30 = 0.0889 

From D.1, D.2 and D.3:    Z2 = 0.17 ,     Pr2 = 5.12/5.04 = 1.016 (comp. liquid) 

   (h
*
2-h2) = 0.2964×282.4×4.0 = 334.8   and      (s

*
2-s2) = 0.2964×3.6 = 1.067 

Ideal gas:      (h
*
2-h

*
1) = 0        and       (s

*
2-s

*
1) = 0 - 0.2964 ln 

5.12
1.536 = -0.3568 

 1q2 = T(s2-s1) = 260.2(-1.067 - 0.3568 + 0.0889) = -347.3 kJ/kg 

 (h2 - h1) = -334.8 + 0 + 33.5 = -301.3 kJ/kg 

 (u2 - u1) = (h2-h1) - RT(Z2-Z1) = -301.3 - 0.2964×260.2(0.17-0.85) = -248.9 

 1w2 = 1q2  - (u2 - u1) = -347.3 + 248.9 = -98.4 kJ/kg 
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 Saturated vapor R-22 at 30°C is throttled to 200 kPa in a steady flow process. 
Calculate the exit temperature assuming no changes in the kinetic energy, using 
the generalized charts, Fig. D.2 and the R-22 tables, Table B.4. 

R-22 throttling process  1st law:     h
2
-h

1
 = (h

2
-h

*
2) + (h

*
2-h

*
1) + (h

*
1-h

1
) = 0 

a) Generalized Chart, Fig. D.2,    R = 8.31451/86.469 = 0.096156 

 T
r1

 = 
303.2
369.3 = 0.821   =>   (h

*
1-h

1
) = 0.096156 × 369.3 (0.53) = 18.82 

    For C
P0

, use h values from Table B.4 at low pressure. 

    C
P0

 ≈ 278.115 - 271.594) / (30 - 20) = 0.6521 kJ/kg K 

    Substituting:   (h
2
-h

*
2) + 0.6521(T

2
-30) + 18.82 = 0 

       at P
r2

 = 200/4970 = 0.040 

    Assume T
2
 = 5.0 oC  =>  T

r2
 =278.2/369.3 = 0.753 

    (h
*
2-h

2
) = RT × 0.07 = 0.096156 × 369.3 (0.07) = 2.49 

    Substituting :    -2.49 + 0.6521(5.0-30) + 18.82 = -0.03 ≈ 0 

    ⇒ T
2
 = 5.0 oC 

b)     R-22 tables, B.4:   at T
1
 = 30 oC, x

1
 = 1.0    =>   h

1
 = 259.12 kJ/kg 

    h
2
 = h

1
 = 259.12 , P

2
 = 0.2 MPa  =>  T

2
 = 4.7 oC 
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 250-L tank contains propane at 30°C, 90% quality. The tank is heated to 300°C. 
Calculate the heat transfer during the process. 

 
 

T 

v 

1 

2 

���������������������������
���������������������������
���������������������������C H 3 8 

 

V = 250 L = 0.25 m3 

T
1
 = 30 oC = 303.2 K, x

1
 = 0.90 

Heat to T
2
 = 300 oC = 573.2 K 

M = 44.094, T
C
 = 369.8 K, P

C
 = 4.25 MPa 

R = 0.188 55,   C
P0

 = 1.6794 

 T
r1

 = 0.82 → Fig. D.1:  

 Z
1
 = (1- x

1
) Z

f1
 + x

1
 Z

g1
 = 0.1 × 0.05 + 0.9 × 0.785 = 0.711 

 Fig D.2:       
h

*
1-h

1

 RT
c
  = 0.1 × 4.43 + 0.9 × 0.52 = 0.911 

P
SAT
r  = 0.30   P

SAT
1  = 1.275 MPa 

 m = 
1275×0.25

0.711×0.188 55×303.2
 = 7.842 kg 

 P
r2

 = 
7.842×Z

2
×0.188 55×573.2

0.25×4250
 = 

Z
2

1.254 

 at T
r2

 = 1.55    Trial and error on P
r2

 

     P
r2

 = 0.743  =>  P
2
 = 3.158 MPa,   Z

2
 = 0.94 ,  (h*- h)

2
 = 0.35 RT

C
 

 (h
*
2-h

*
1) = 1.6794(300-30)        = 453.4 kJ/kg 

 (h
*
1-h

1
) = 0.911×0.188 55×369.8 =  63.5 kJ/kg 

 (h
*
2-h

2
) = 0.35×0.188 55×369.8 =  24.4 kJ/kg 

 Q
12

 = m(h
2
-h

1
) - (P

2
-P

1
)V = 7.842(-24.4+453.4+63.5) - (3158-1275)×0.25 

        = +3862 - 471 = 3391 kJ 
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 The new refrigerant fluid R-123 (see Table A.2) is used in a refrigeration system 
that operates in the ideal refrigeration cycle, except the compressor is neither 
reversible nor adiabatic. Saturated vapor at -26.5°C enters the compressor and 
superheated vapor exits at 65°C. Heat is rejected from the compressor as 1 kW, 
and the R-123 flow rate is 0.1 kg/s. Saturated liquid exits the condenser at 37.5°C. 
Specific heat for R-123 is CP = 0.6 kJ/kg. Find the coefficient of performance. 

 

R-123: Tc = 456.9 K, Pc = 3.67 MPa,  M = 152.93 kg/kmol, R = 0.05438 kJ/kg K 

State 1: T1 = -26.5oC = 246.7 K, sat vap., x1 = 1.0 

 Tr1 = 0.54, Fig D.1, Pr1 = 0.01, P1 = Pr1Pc = 37 kPa 

 Fig. D.2,    h
*
1-h1 = 0.03 RTC = 0.8 kJ/kg 

State 2: T2 = 65oC = 338.2 K 

State 3: T3 = 37.5oC = 310.7 K, sat. liq., x3 = 0 

Tr3 = 0.68, Fig. D.1: Pr3 = 0.08,   P3 = Pr3Pc = 294 kPa  

 P2 = P3 = 294 kPa,   Pr2 = 0.080,   Tr2 = 0.74,  

Fig. D.2:     h
*
2-h2  = 0.25 RTC = 6.2 kJ/kg 

     h
*
3-h3 = 4.92 RTC = 122.2 kJ/kg  

State 4: T4 = T1 = 246.7 K,      h4 = h3 

1st Law Evaporator: qL + h4 = h1 + w; w = 0,     h4 = h3 

 qL = h1 - h3 = (h1 − h
*
1) + (h

*
1 − h

*
3) + (h

*
3 − h3) 

 h
*
1 − h

*
3 = CP(T1 - T3) = -38.4 kJ/kg, qL = -0.8 – 38.4 + 122.2 = 83.0 kJ/kg 

1st Law Compressor: q + h1 = h2 + wc;    Q
.
 = -1.0 kW,      m

.
 = 0.1 kg/s 

 wc = h1 - h2 + q; h1 - h2 = (h1 − h
*
1) + (h

*
1 − h

*
2) + (h

*
2 − h2) 

 h
*
1 − h

*
2 = CP(T1 - T2) = -54.9 kJ/kg,  

wc = -0.8 –54.9 + 6.2 – 10.0 = -59.5 kJ/kg 

 β = qL/wc = 83.0/59.5 = 1.395 
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 An uninsulated piston/cylinder contains propene, C
3
H

6
, at ambient temperature, 

19°C, with a quality of 50% and a volume of 10 L. The propene now expands 
very slowly until the pressure in the cylinder drops to 460 kPa. Calculate the mass 
of propene, the work, and heat transfer for this process. 

 Propene C
3
H

6
:     T

1
 = 19oC = 292.2 K,    x

1
 = 0.50,    V

1
 = 10 L  

 From Fig. D.1: T
r1

 = 292.2/364.9 = 0.80, 

P
r1

 = P
r sat

 = 0.25,    P
1
 = 0.25 × 4.6 = 1.15 MPa  

 From D.1:     Z
1
 = 0.5 × 0.04 + 0.5 × 0.805 = 0.4225  

 m = 
P

1
V

1

Z
1
RT

1
 = 

1150×0.010
0.4225×0.197 58×292.2

 = 0.471 kg 

Assume reversible and isothermal process (slow, no friction, not insulated) 

    
1
Q

2
  = m(u

2
-u

1
) + 

1
W

2
  

    
1
W

2
 = ⌡⌠

1

2

 PdV  (cannot integrate);      
1
Q

2
 = ⌡⌠

1

2

 TdS = Tm(s
2
-s

1
) 

 From Figs. D.2 and D.3: 

    h
*
1 - h

1
 = 0.19758 × 364.9(0.5 × 4.51 + 0.5 × 0.46) = 179.2 kJ/kg 

    (s
*
1 - s

1
) = 0.197 58 (0.5 × 5.46 + 0.5 × 0.39) = 0.5779 kJ/kg K 

The ideal gas change in h and s are 

    (h
*
2 - h

*
1) = 0 and (s

*
2 - s

*
1) = 0 - 0.197 58 ln 

460
1161 = + 0.1829 kJ/kg K 

  At T
r2

 = 0.80,   P
r2

 = 0.10, from D.1, D.2 and D.3,   Z
2
 = 0.93  

    (h
*
2 - h

2
) = 0.197 58 × 364.9 × 0.16 = 11.5 kJ/kg 

    (s
*
2 - s

2
) = 0.197 58 × 0.13 = 0.0257 kJ/kg K 

Now we can do the change in s and h from state 1 to state 2 

    (s
2
 - s

1
) =  -(s

*
2 - s

2
) + (s

*
2 - s

*
1) + (s

*
1 - s

1
) 

  = -0.0257 + 0.1829 + 0.5779 = 0.7351 kJ/kg K 

    (h
2
 - h

1
) = - (h

*
2 - h

2
) + (h

*
2 - h

*
1) +  h

*
1 - h

1
 

  = -11.5 + 0 + 179.2 = 167.7 kJ/kg 
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The heat transfer is found from the second law 

   
1
q

2
 = 292.2 × 0.7351 = 214.8 kJ/kg      =>     

1
Q

2
 = m 

1
q

2
 = 101.2 kJ 

We need the internal energy in the energy equation 

 u
2
 - u

1
 = (h

2
 - h

1
) + RT(Z

1
 - Z

2
) = 167.7 + 0.197 58 × 292.2 (0.4225 - 0.93)  

= 138.4 kJ/kg 

    
1
w

2
 = 

1
q

2
 - (u

2
 - u

1
) = 214.8 - 138.4 = 76.4 kJ/kg 

    
1
W

2
 = m 

1
w

2
 = 36.0 kJ 
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13.85 

 A geothermal power plant on the Raft River uses isobutane as the working fluid. 
The fluid enters the reversible adiabatic turbine, as shown in Fig. P13.42, at 
160°C, 5.475 MPa, and the condenser exit condition is saturated liquid at 33°C. 
Isobutane has the properties Tc= 408.14 K, Pc= 3.65 MPa, CP0= 1.664 kJ/kg K 

and ratio of specific heats k = 1.094 with a molecular weight as 58.124. Find the 
specific turbine work and the specific pump work. 

 Turbine inlet: T1 = 160oC , P1 = 5.475 MPa 

 Condenser exit:  T3 = 33oC , x3 = 0.0, Tr3 = 306.2 / 408.1 = 0.75  

 From Fig. D.1: 

    Pr3 = 0.16,  Z3 = 0.03 =>   P2 = P3 = 0.16 × 3.65 = 0.584 MPa  

    Tr1 = 433.2 / 408.1  = 1.061,    Pr1 = 5.475 / 3.65 = 1.50 

 From Fig. D.2 & D.3: 

    (h
*
1-h1) = 0.143 05×408.1×2.84 = 165.8 

    (s
*
1-s1) = 0.143 05×2.15 = 0.3076 

    (s
*
2-s

*
1) = 1.664 ln 

306.2
433.2 - 0.143 05 ln 

0.584
5.475 = -0.2572 

    (s
*
2-s2) = (s

*
2-sF2) - x2sFG2 

         = 0.143 05×6.12 - x2×0.143 05(6.12-0.29) = 0.8755 - x
2
×0.8340 

    (s2-s1) = 0 = -0.8755 + x2×0.8340 - 0.2572 + 0.3076     =>     x2 = 0.99 

    (h
*
2-h

*
1) = C

P0
(T

2
-T

1
) = 1.664(306.2 - 433.2) = -211.3   

From Fig. D.2:, 

    (h
*
2-h2) = (h

*
2-hF2) - x2hFG2 = 0.143 05×408.1[4.69-0.99(4.69-0.32)] 

      = 273.8 − 0.99 × 255.1 = 21.3 

Turbine:    wT = (h1-h2) = -165.8 + 211.3 + 21.3 = 66.8 kJ/kg 

Pump:    v
F3

 = 
ZF3RT3

P3
 = 

0.03×0.143 05×306.2
584  = 0.00225 

    wP = -  ∫ v dP ≈  vF3(P4 -P3) = -0.00225 (5475-584) = -11.0 kJ/kg 
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13.86 

 A line with a steady supply of octane, C8H18, is at 400°C, 3 MPa. What is your 

best estimate for the availability in a steady flow setup where changes in potential 
and kinetic energies may be neglected? 

 Availability of Octane at  T
i
 = 400 oC, P

i
 = 3 MPa  

    P
ri
 = 

3
2.49 = 1.205,     T

ri
 = 

673.2
568.8 = 1.184 

 From D.2 and D.3, 

 (h
*
1-h

1
) = 0.072 79×568.8×1.13 = 46.8 ;     (s

*
1-s

1
) = 0.072 79×0.69 = 0.05 

Exit state in equilibrium with the surroundings, assume  T
0
 = 298.2 K, P

0
 = 

100 kPa 

    T
r0

 = 
298.2
568.8 = 0.524 , P

r0
 = 

0.1
2.49 = 0.040 

    From D.2 and D.3, 

   (h
*
0-h

0
) = RT

C
×5.4 = 223.6        and          (s

*
0-s

0
) = R×10.37 = 0.755 

    (h
*
i -h

*
0) = 1.7113(673.2-298.2) = 641.7 

    (s
*
i -s

*
0) = 1.7113 ln 

673.2
298.2 - 0.072 79 ln 

3
0.1 = 1.1459 

    (h
i
-h

0
) = -46.8 + 641.7 + 223.6 = 818.5 

    (s
i
-s

0
) = -0.05 + 1.1459 + 0.755 = 1.8509    

    ϕ
i
 = wrev = (h

i
-h

0
) - T

0
(s

i
-s

0
)  = 818.5 - 298.2(1.8509) = 266.6 kJ/kg 
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13.87 

 An insulated cylinder fitted with a frictionless piston contains saturated-vapor 
carbon dioxide at 0oC, at which point the cylinder volume is 20 L.  The external 
force on the piston is now slowly decreased, allowing the carbon dioxide to 
expand until the temperature reaches - 30oC.  Calculate the work done by the  
CO2 during this process. 

CO2: Tc = 304.1 K, Pc = 7.38 MPa, Cp = 0.842 kJ/kg-K, R = 0.1889 kJ/kg K 

State 1:  T1 = 0oC, sat. vap., x1 = 1.0, V1 = 20 L 

 Tr1 = 0.9, P1 = Pr1Pc = 0.53 × 7380 = 3911 kPa, Z1 = Zg = 0.67 

 (h
*
1 − h1)g  = 0.9 RTC,  (s

*
1 − s1)g/R = 0.72,   m = 

P1V1
Z1RT1

 = 2.262 kg 

State 2:  T2 = -30oC 

 Tr2 = 0.8, P2 = Pr2Pc = 0.25 × 7380 = 1845 kPa 

2nd Law:      ∆Snet =m(s2 − s1) − 1Q2/T ;      1Q2 = 0,      ∆Snet = 0 

 s2 - s1 = (s2 − s
*
2) + (s

*
2 − s

*
1) + (s

*
1 − s1) = 0 

 s
*
2 − s

*
1 = CP ln 

T2
T1

  − R ln 
P2
P1

 = 0.044 kJ/kg-K,   s
*
1 − s1 = 0.136 kJ/kg-K 

 s
*
2 - s2  = 0.180 kJ/kg K,   (s

*
2 − s2)f = 5.46 R,   (s

*
2 − s2)g = 0.39 R 

 (s
*
2 − s2) = (1-x2)(s

*
2 − s2)f + x2 (s

*
2 − s2)g      x2 = 0.889 

1st Law:       1Q2 = m(u2 − u1) + 1W2 ;   1Q2 = 0,    u = h - Pv 

 Z2 = (1 - x2)Zf + x2Zg = 0.111 × 0.04 + 0.889 × 0.81 =  0.725; 

 (h2 - h1) = (h2 − h
*
2) + (h

*
2 − h

*
1) + (h

*
1 − h1) 

 h
*
2 − h

*
1 = Cp(T2 - T1) = -25.3 kJ/kg,  (h

*
1 − h1) = 51.7 kJ/kg 

 (h
*
2 − h2)f  = 4.51 RTC ,   (h

*
2 − h2)g = 0.46 RTC 

 (h
*
2 − h2) = (1 - x2)(h

*
2 − h2)f + x2 (h

*
2 − h2)g =   52.2 kJ/kg 

h2 - h1 = -52.2 – 25.3 + 51.7 = -25.8 kJ/kg 

 u2 - u1 = (h2 - h1) - Z2RT2 + Z1RT1  = -25.8 – 0.725 × 0.18892 × 243.2  

       + 0.67 × 0.18892 × 273.2  =  -24.5 kJ/kg 

1W2 = 55.4 kJ 
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13.88 

 An evacuated 100-L rigid tank is connected to a line flowing R-142b gas, 
chlorodifluoroethane, at 2 MPa, 100°C. The valve is opened, allowing the gas to 
flow into the tank for a period of time, and then it is closed. Eventually, the tank 
cools to ambient temperature, 20°C, at which point it contains 50% liquid, 50% 
vapor, by volume. Calculate the quality at the final state and the heat transfer for 
the process. The ideal-gas specific heat of R-142b is  Cp = 0.787 kJ/kg K. 

 Rigid tank V = 100 L, m1 = 0  Line: R-142b CH3CClF2 

 M = 100.495, TC = 410.3 K, PC = 4.25 MPa,    CP0 = 0.787 kJ/kg K 

 R = R
−

/M = 8.31451 / 100.495 = 0.082 73 kJ/kg K 

 Line Pi = 2 MPa, Ti = 100 oC,   Flow in to T2 = T0 = 20oC 

    VLIQ 2 = VVAP 2 = 50 L 

 Continuity:   m
i
 = m

2
 ;   Energy: Q

CV
 + m

i
h

i
 = m

2
u

2
 = m

2
h

2
 - P

2
V 

 From D.2 at i:  P
ri
 = 2 / 4.25  = 0.471,    T

ri
 = 373.15 / 410.3 = 0.91 

    (h
*
i -h

i
) = 0.082 73×410.3×0.72 = 24.4 

    (h
*
2-h

*
i ) = C

P0
(T

2
-T

i
) = 0.787(20-100) = -63.0 

 From D.2: T
r2

 = 
293.2
410.3 = 0.715   => P

2
 = 0.115×4250 = 489 kPa 

 sat. liq.: ZF = 0.02,   (h*-hF) = RTC×4.85 = 164.6 

 sat. vap.: ZG = 0.88,   (h*-hG) = RTC×0.25 = 8.5 

 mLIQ 2 = 
P2VLIQ 2

ZFRT2
 = 

489×0.050
0.02×0.082 73×293.2

 = 50.4 kg 

 m
VAP 2

 = 
P2VVAP 2

ZGRT2
 = 1.15 kg,       m2 =  51.55 kg 

 x2 = mVAP 2/m2  = 0.0223 

 (h
*
2-h2) = (1-x2)(h

*
2-hF2) + x2(h

*
2-hG2) = 0.9777 × 164.6 + 0.0223 × 8.5 = 161.1 

 QCV = m2(h2-hi) - P2V = 51.55(-161.1-63.0+24.4) - 489×0.10  

           = -10 343 kJ 
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13.89 

 Saturated liquid ethane at 2.44 MPa enters a heat exchanger and is brought to 611 
K at constant pressure, after which it enters a reversible adiabatic turbine where it 
expands to 100 kPa. Find the heat transfer in the heat exchanger, the turbine exit 
temperature and turbine work. 

 From D.2, 

  P
r1

 = 2.44/4.88 = 0.50 ,   T
r1

 = 0.89, T
1
 = 0.89×305.4 = 271.8 K 

    (h
*
1-h

1
) = 0.2765×305.4×4.12 = 347.9 

     (h
*
2-h

*
1) = 1.766 (611 - 271.8) = 599.0 

    P
r2

 = 0.50 ,  T
r2

 = 611/305.4 = 2.00 

 From D.2:       (h
*
2-h

2
) = RTc × 0.14 = 0.2765×305.4×0.14 = 11.8 

 q = (h
2
-h

1
) = -11.8 + 599.0 + 347.9 = 935.1 kJ/kg 

 From D.3, 

    (s
*
2-s2) = 0.2765×0.05 = 0.0138 

    (s
*
3-s

*
2) = 1.766 ln 

T3

611 - 0.2765 ln 
100
2440 

 Assume T3 = 368 K , Tr3 = 1.205 

  at Pr3 = 0.020 

    (s
*
3-s

*
2) = -0.8954 + 0.8833 = -0.0121 

 From D.3, 

    (s
*
3-s3) = 0.2765×0.01 = 0.0028 

 (s
3
-s2) = -0.0028 - 0.0121 + 0.0138 ≈ 0    ΟΚ 

 Therefore, T3 = 368 K 

 From D.2, 

    (h
*
3-h3) = 0.2765×305.4×0.01 = 0.8 

 w = (h2-h3) = -11.8 + 1.766 (611 - 368) + 0.8 = 418.1 kJ/kg 
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13.90 

 A control mass of 10 kg butane gas initially at 80°C, 500 kPa, is compressed in a 
reversible isothermal process to one-fifth of its initial volume. What is the heat 
transfer in the process? 

 Butane C
4
H

10
: m = 10 kg,  T

1
 = 80 oC, P

1
 = 500 kPa 

 Compressed, reversible T = const, to V
2
 = V

1
/5 

 T
r1

 = 
353.2
425.2 = 0.831, P

r1
 = 

500
3800 = 0.132 

 From D.1 and D.3:    Z
1
 = 0.92,    (s

*
1- s

1
) = 0.143×0.16 = 0.0230 

 v
1
 = 

Z
1
RT

1

P
1

 = 
0.92×0.143×353.2

500  = 0.09296 m3/kg 

 v
2
 = v

1
/5 = 0.01859 m3/kg 

 At T
r2

 = T
r1

 = 0.831  

 From D.1: P
G

 = 0.325×3800 = 1235 kPa 

 sat. liq.: Z
F
 = 0.05,      (s*-s

F
) = R×5.08 = 0.7266 

 sat. vap.: Z
G

 = 0.775,      (s*-s
G

) = R×0.475 = 0.0680 

 Therefore 

  v
F
 = 

0.05×0.143×353.2
1235  = 0.00205 m3/kg 

  v
G

 = 
0.775×0.143×353.2

1235  = 0.0317 m3/kg 

 Since v
F
 < v

2
 < v

G
  →  x

2
 = (v

2
-v

F
)/(v

G
-v

F
) = 0.5578 

 (s
*
2 - s

2
) = (1 - x

2
)(s

*
2 - s

F2
) + x

2
(s

*
2 - s

G2
) 

            = 0.4422 × 0.7266 + 0.5578 × 0.0680 = 0.3592 kJ/kg K 

 (s
*
2 - s

*
1) = C

P0
 ln (T

2
/T

1
) - R ln (P

2
/P

1
) = 0 - 0.143 ln (1235/500) = -0.1293 

 (s
2
 - s

1
) = -0.3592 - 0.1293 + 0.0230 = -0.4655 kJ/kg K 

 
1
Q

2
 = Tm(s

2
 - s

1
) = 353.2 × 10 (-0.4655) = -1644 kJ 
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13.91 
 An uninsulated compressor delivers ethylene, C2H4, to a pipe, D = 10 cm, at 10.24 

MPa, 94°C and velocity 30 m/s. The ethylene enters the compressor at 6.4 MPa, 
20.5°C and the work input required is 300 kJ/kg. Find the mass flow rate, the total 
heat transfer and entropy generation, assuming the surroundings are at 25°C. 

    T
ri
 = 

293.7
282.4 = 1.040 , P

ri
 = 

6.4
5.04 = 1.270 

 From D.2 and D.3, 

    (h
*
i -h

i
) = 0.296 37 × 282.4 × 2.65 = 221.8 kJ/kg 

    (s
*
i -s

i
) = 0.296 37 × 2.08 = 0.6164 kJ/kg K 

    T
re

 = 
367.2
282.4 = 1.30 , P

re
 = 

10.24
5.04  = 2.032   =>  From D.1:    Z

e
 = 0.69 

    v
e
 = 

Z
e
RT

e

P
e

 = 
0.69×0.296 37×367.2

10 240  = 0.0073 m3/kg 

 A
e
 = 

π
4 D2

e = 0.007 85 m2    =>      m
.

 = 
A

e
V

e

v
e

 = 
0.007 85×30

0.0073  = 32.26 kg/s 

 From D.2 and D.3, 

    (h
*
e-h

e
) = 0.296 37 × 282.4 × 1.6 = 133.9 kJ/kg 

    (s
*
e-s

e
) = 0.296 37 × 0.90 = 0.2667 kJ/kg K 

    (h
*
e-h

*
i ) = 1.5482(367.2-293.7) = 113.8  

 (s
*
e-s

*
i ) = 1.5482 ln 

367.2
293.7 - 0.296 37 ln 

10.24
6.4  = 0.2065 

    (h
e
-h

i
) = -133.9 + 113.8 + 221.8 = 201.7 kJ/kg  

    (s
e
-s

i
) = -0.2667 + 0.2065 + 0.6164 = 0.5562 kJ/kg K 

 First law: 

    q = (h
e
-h

i
) + KE

e
 + w = 201.7 + 

302

2×1000
 - 300 = -97.9 kJ/kg 

 Q
.

cv
 = m

.
q = 32.26(-97.9) = -3158 kW 

 S
.

gen
 = −

Q
.

cv

To
 + m

.
(s

e
 - s

i
) = + 

3158
298.2 + 32.26(0.5562) = 28.53 kW/K 
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13.92 

 A distributor of bottled propane, C3H8, needs to bring propane from 350 K, 100 

kPa to saturated liquid at 290 K in a steady flow process. If this should be 
accomplished in a reversible setup given the surroundings at 300 K, find the ratio of 
the volume flow rates V

.
in/V

.
out, the heat transfer and the work involved in the 

process. 

 From Table A.2:   T
ri
 = 

350
369.8 = 0.946 ,     P

ri
 = 

0.1
4.25 = 0.024 

 From D.1, D.2 and D.3, 

     Z
i
 = 0.99 

    (h
*
i -h

i
) = 0.1886×369.8×0.03 = 2.1 kJ/kg 

    (s
*
i -s

i
) = 0.1886×0.02 = 0.0038 kJ/kg K 

    T
re

 = 
290

369.8 = 0.784, 

 From D.1, D.2 and D.3, 

     P
re

 = 0.22 ,  P
e
 = 0.22×4.25 = 0.935 MPa    and         Z

e
 = 0.036  

    (h
*
e-h

e
) = 0.1886×369.8×4.57 = 318.6 kJ/kg 

    (s
*
e-s

e
) = 0.1886×5.66 = 1.0672 kJ/kg K  

    (h
*
e-h

*
i ) = 1.679(290 - 350) = -100.8 kJ/kg 

    (s
*
e-s

*
i )    = 1.679 ln 

290
350  - 0.1886 ln 

0.935
0.1  = -0.7373 kJ/kg K 

     (h
e
-h

i
) = -318.6 - 100.8 + 2.1 = -417.3 kJ/kg  

    (s
e
-s

i
) = -1.0672 - 0.7373 + 0.0038 = -1.8007 kJ/kg K 

 
V
.

in

 V 
.

out
 = 

Z
i
T

i
/P

i

Z
e
T

e
/P

e
 = 

0.99
0.036 × 

350
290 × 

0.935
0.1  = 310.3  

wrev = (h
i
-h

e
) -T

0
(s

i
-s

e
) = 417.3 - 300(1.8007) = -122.9 kJ/kg 

 qrev = (h
e
-h

i
) + wrev = -417.3 –122.9 = -540.2 kJ/kg 
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13.93 
 The environmentally safe refrigerant R-152a is to be evaluated as the working 

fluid for a heat pump system that will heat a house. It uses an evaporator 

temperature of –20oC and a condensing temperature of 30oC. Assume all 
processes are ideal and R-152a has a heat capacity of Cp = 0.996 kJ/kg K. 

Determine the cycle coefficient of performance. 

 

Ideal Heat Pump   T
H

 = 30 oC  

 From A.2:     M = 66.05, R = 0.125 88,  T
C
 = 386.4 K, P

C
 = 4.52 MPa 

 
 T 

v 

1 

2 
3 

4 

��

��

�
�

�

 

 T
r3

 = 
303.2
386.4 = 0.785 

 P
r3

 = P
r2

 = 0.22    =>    P
3
 = P

2
 = 994 kPa 

 Sat.liq.:      h
*
3 - h

3
 = 4.56×RT

C
 = 221.8 

 

T
1
 = -20 oC = 253.2 K,  T

r1
 = 0.655,   P

r1
 = 0.058 → P

1
 = 262 kPa 

    h
*
1 - h

1
 = 0.14×RT

C
 = 6.8    and         s

*
1 - s

1
 = 0.14×R   = 0.0176 

Assume T
2
 = 307 K,   T

r2
 = 0.795   given   P

r2
 = 0.22  

From D.2, D.3:   s
*
2 - s

2
 = 0.34×R = 0.0428  ;     h

*
2 - h

2
 = 0.40×RT

c
 = 19.5 

    s
*
2 - s

*
1 = 0.996 ln 

307
253.2 - 0.125 88 ln 

994
262 = 0.0241 

    s
2
 - s

1
 = -0.0428 + 0.0241 + 0.0176 = -0.001 ≈ 0  OK 

    ⇒ h
2
 - h

1
 = -19.5 + 0.996(307-253.2) + 6.8 = 40.9 

    h
2
 - h

3
 = -19.5 + 0.996(307-303.2) + 221.8 = 206.1 

     β = 
q

H

w
IN

 = 
h

2
 - h

3

h
2
 - h

1
 = 

206.1
40.9   = 5.04 
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13.94 

 Rework the previous problem using an evaporator temperature of 0oC. 

Ideal Heat Pump   T
H

 = 30 oC  

 From A.2:     M = 66.05,  R = 0.125 88,  T
C
 = 386.4 K, P

C
 = 4.52 MPa 

 
 T 

v 

1 

2 
3 

4 

�

�

�

�

 

 T
r3

 = 
303.2
386.4 = 0.785 

 P
r3

 = P
r2

 = 0.22    =>    P
3
 = P

2
 = 994 kPa 

 Sat.liq.:      h
*
3 - h

3
 = 4.56×RT

C
 = 221.8 

 

 T
1
 = 0 oC = 273.2 K, T

r1
 = 0.707  =>   P

r1
 = 0.106,  P

1
 = 479 kPa 

    h
*
1 - h

1
 = 0.22×RT

C
 = 10.7          and       s

*
1 - s

1
 = 0.21×R   = 0.0264 

    Assume T
2
 = 305 K, T

r2
 = 0.789 

    s
*
2 - s

2
 = 0.35×R   = 0.0441        and       h

*
2 - h

2
 = 0.38×RT

C
 = 18.5 

    s
*
2 - s

*
1 = 0.996 ln 

305.0
273.2 - 0.125 88 ln 

994
479 = 0.0178 

    s
2
 - s

1
 = -0.0441 + 0.0178 + 0.0264 = 0.0001 ≈ 0  OK 

    h
2
 - h

1
 = -18.5 + 0.996(305.0-273.2) + 10.7 = 23.9 

    h
2
 - h

3
 = -18.5 + 0.996(305.0-303.2) + 221.8 = 205.1 

    β = 
h

2
 - h

3

h
2
 - h

1
 = 

205.1
23.9  = 8.58 
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Mixtures 
 
 
13.95 
 A 2 kg mixture of 50% argon and 50% nitrogen by mole is in a tank at 2 MPa, 

180 K. How large is the volume using a model of   (a)  ideal gas  and  (b)  Kays 
rule with generalized compressibility charts. 

 
 a)  Ideal gas mixture 

  Eq.12.5:    Mmix =  ∑ yi Mi = 0.5 × 39.948 + 0.5 × 28.013 = 33.981 

    V = 
mR

−
T

MmixP = 
2 × 8.3145 × 180

33.981 × 2000
 = 0.044 m3 

  
 b)  Kay’s rule   Eq.13.86 
  Pc mix = 0.5 × 4.87 + 0.5 × 3.39 = 4.13 MPa 

  Tc mix =  0.5 × 150.8 + 0.5 × 126.2 = 138.5 K 

       Reduced properties: Pr = 
2

4.13 = 0.484,    Tr = 
180

138.5 = 1.30 

      Fig. D.1:    Z = 0.925 

  V = Z 
mR

−
T

MmixP = 0.925 × 0.044 = 0.0407 m3 
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13.96 
   A 2 kg mixture of 50% argon and 50% nitrogen by mass is in a tank at 2 MPa, 

180 K. How large is the volume using a model of   (a)  ideal gas  and  (b)  van der 
Waals equation of state with a, b for a mixture? 

 
 a)  Ideal gas mixture 

      Eq.12.15:   Rmix =  ∑ ci Ri = 0.5 × 0.2081 + 0.5 × 0.2968 = 0.25245 kJ/kg K 

   V = 
mRmixT

P  = 
2 × 0.25245 × 180

2000  = 0.0454 m3 

b) van der Waals equation of state. before we can do the parameters a, b for the 
mixture we need the individual component parameters. 

  aAr = 
27
64 

R2T
2
c

Pc
 = 

27
64 

(0.2081 × 150.8)2

4870  = 0.08531 

  aN2 = 
27
64 

R2T
2
c

Pc
 = 

27
64 

(0.2968 × 126.2)2

3390  = 0.17459 

  bAr =  
RTc
8Pc

 = 
0.2081 × 150.8

8 × 4870
 = 0.000 805 

  bN2 = 
RTc
8Pc

 = 
0.2968 × 126.2

8 × 3390
 = 0.001 381 

    Now the mixture parameters are from eq.13.87 

   amix =  



∑ ci a

1/2
i

2
 = (0.5 × 0.08531 + 0.5 × 0.17459)2 = 0.126 

  bmix =  ∑ ci bi = 0.5 × 0.000 805 + 0.5 × 0.001 381 = 0.001 093 

    Using now eq.13.52:  P = 
RT

v − b
 − 

a
v2  

     2000 = 
0.25245 × 180
v − 0.001 093

 − 
0.126

v2  

    By trial and error we find the specific volume,  v = 0.02097 m3/kg 

   V = mv = 0.04194 m3 
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   A 2 kg mixture of 50% argon and 50% nitrogen by mass is in a tank at 2 MPa, 

180 K. How large is the volume using a model of   (a)  ideal gas  and  (b)  Redlich 
Kwong equation of state with a, b for a mixture. 

 
 a)  Ideal gas mixture 

      Eq.12.15:   Rmix =  ∑ ci Ri = 0.5 × 0.2081 + 0.5 × 0.2968 = 0.25245 kJ/kg K 

   V = 
mRmixT

P  = 
2 × 0.25245 × 180

2000  = 0.0454 m3 

b) Redlich Kwong equation of state. Before we can do the parameters a, b for the 
mixture we need the individual component parameters, Eq.13.58, 13.59. 

  aAr = 0.42748 
R2T

5/2
c

Pc
 = 0.42748 

0.20812 × 150.82.5

4870  = 1.06154 

  aN2 = 0.42748 
R2T

5/2
c

Pc
 = 0.42748 

0.29682 × 126.22.5

3390  = 1.98743 

  bAr = 0.08664  
RTc
Pc

 = 0.08664  
0.2081 × 150.8

4870  = 0.000 558 

  bN2 = 0.08664  
RTc
Pc

 = 0.08664  
0.2968 × 126.2

3390  = 0.000 957 

    Now the mixture parameters are from eq.13.87 

   amix =  



∑ ci a

1/2
i

2
 = (0.5 × 1.06154 + 0.5 × 1.98743)2 = 1.4885 

  bmix =  ∑ ci bi = 0.5 × 0.000 558 + 0.5 × 0.000 957 = 0.000 758 

    Using now eq.13.57: P = 
RT

v − b
 − 

a
v(v + b)T1/2  

    2000 = 
0.25245 × 180
v − 0.000 758

 − 
1.4885

v(v + 0.000 758) 1801/2 

    By trial and error we find the specific volume,  v = 0.02102 m3/kg 

   V = mv = 0.04204 m3 
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 Saturated-liquid ethane at T1 = 14°C is throttled into a steady flow mixing 

chamber at the rate of 0.25 kmol/s.  Argon gas at T2 = 25°C, P2 = 800 kPa, enters 

the chamber at the rate of 0.75 kmol/s.  Heat is transferred to the chamber from a 

heat source at a constant temperature of 150oC at a rate such that a gas mixture 

exits the chamber at T3 = 120oC, P3 = 800 kPa. Find the rate of heat transfer and 

the rate of entropy generation. 

Argon,   Ta2 = 25oC,   P2 = 800 kPa,  n
.
2 = 0.75 kmol/s 

 Tca = 150 K, Pca = 4.87 MPa, Ma = 39.948 kg/kmol, Cpa = 0.52 kJ/kg K 

 h
-

a3 - h
-

a2 = MaCpa(T3 - Ta2) = 1973.4 kJ/kmol 

Inlet:  Ethane, Tb1 = 14oC, sat. liq., xb1 = 0,  n
.
1 = 0.25 kmol/s 

 Tcb = 305.4 K, Pcb = 4.88 MPa, Mb = 30.07 kg/kmol, Cpb = 1.766 kJ/kg-K 

 Tr1 = 0.94,   Pb1 = Pr1Pcb = 0.69 × 4880 = 3367 kPa 

 h
−∗

b1 − h
−

b1 = 3.81 R
−

Tcb = 9674.5 kJ/kmol,    s-
∗
b1 − s-b1 = 3.74 R

−
 = 31.1 

 h
−∗

b3 - h
−∗

b1  = MbCpb(T3 - Tb1) = 5629.6 kJ/kmol  

Exit:  Mix, T3 = 120oC, P3 = 800 kPa   consider this an ideal gas mixture.  

Energy Eq.:   n
.
1h
-

b1 + n
.
2h
-

a2 +Q
.
 = n

.
3h
-

3 = n
.
1h
-

b3 + n
.
2h
-

a3 

 Q
.
 = n

.
1(h

-
b3 - h

-
b1) + n

.
2(h

-
a3 - h

-
a2) = 0.25 (5629.6 + 9674.5) + 0.75(1973.4) 

     = 5306 kW 

Entropy Eq.:     S
.
gen = n

.
1(s-b3 − s-b ) + n

.
2(s-a3 − s-a2) - Q

.
/TH ;     TH = 150oC 1

 ya = n
.
2/n

.
tot = 0.75;    yb = n

.
1/n

.
tot = 0.25 

 s-a3 − s-a2 = MaCpaln
T3
Ta2

- R
−

 ln 
yaP3
Pa2

 = 8.14 kJ/kmol-K 

 s-b3 − s-b1 = MbCpbln
T3
Tb1

 - R
−

 ln 
ybP3
Pb1

 + s-
∗
b1 − s-b1 = 

   = 40.172 + 31.1 = 71.27 kJ/kmol K 

 S
.
gen = 0.25 × 71.27 + 0.75 × 8.14 - 5306 / 423 = 11.38 kW/K 
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 A modern jet engine operates so that the fuel is sprayed into air at a P, T higher 

than the fuel critical point. Assume we have a rich mixture of 50% n-octane and 
50% air by mole at 500 K and 3.5 MPa near the nozzle exit. Do I need to treat this 
as a real gas mixture or is an ideal gas assumption reasonable? To answer find Z 
and the enthalpy departure for the mixture assuming Kay’s rule and the 
generalized charts. 

 
 The mole fractions are: 
  yC8H18 = 0.5,   yN2 = 0.5 × 0.79 = 0.395,   yO2 = 0.5 × 0.21 = 0.105 

 Eq.12.5:  

Mmix =  ∑ yi Mi = 0.5 × 114.232 + 0.395 × 28.013 + 0.105 × 31.999 

          = 71.541 
Kay’s rule Eq.13.86 

  Pc mix = 0.5 × 2.49 + 0.395 × 3.39 + 0.105 × 5.04 = 3.113 MPa 

  Tc mix = 0.5 × 568.8 + 0.395 × 126.2 + 0.105 × 154.6 = 350.5 K 

       Reduced properties: Pr = 
3.5

3.113 = 1.124,    Tr = 
500

350.5 = 1.427 

      Fig. D.1:    Z = 0.87 I must treat it as a real gas mixture. 

      Fig. D.2     h* − h = 0.70 × RT
c
 = 0.70 × 

8.3145
71.541 × 350.5 = 28.51 kJ/kg 
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A mixture of 60% ethylene and 40% acetylene by moles is at 6 MPa, 300 K. The 
mixture flows through a preheater where it is heated to 400 K at constant P. Using 
the Redlich Kwong equation of state with a, b for a mixture find the inlet specific 
volume. Repeat using Kays rule and the generalized charts. 
 
To do the EOS we need the gas constant, so from Eq.12.5 we get 

Mmix =  ∑ yi Mi = 0.6 × 28.054 + 0.4 × 26.068 = 27.26 

Rmix = 8.3145/27.26 = 0.305 kJ/kg K 

Redlich Kwong EOS the individual component parameters, Eq.13.58, 13.59. 

  aC2H4 = 0.42748 
R2T

5/2
c

Pc
 = 0.42748 

0.29642 × 282.42.5

5040  = 9.9863 

  aC2H2 = 0.42748 
R2T

5/2
c

Pc
 = 0.42748 

0.31932 × 308.32.5

6140  = 11.8462 

  bC2H4 = 0.08664  
RTc
Pc

 = 0.08664  
0.2964 × 282.4

5040  = 0.001 439 

  bC2H2 = 0.08664  
RTc
Pc

 = 0.08664  
0.3193 × 308.3

6140  = 0.001 389 

    Now the mixture parameters are from eq.13.87 so we need the mass fractions 

  cC2H4 = 
y M

Mmix
 = 

0.6 × 28.054
 27.26  = 0.6175,       cC2H4 = 1 - cC2H4 = 0.3825 

  amix =  



∑ ci a

1/2
i

2
 = (0.6175 × 9.9863 + 0.3825 × 11.8462)2 = 10.679 

  bmix =  ∑ ci bi = 0.6175 × 0.001 439 + 0.3825 × 0.001 389 = 0.001 42 

    Using now eq.13.57: P = 
RT

v − b
 − 

a
v(v + b)T1/2  

    6000 = 
0.305 × 300
v − 0.001 42

 − 
10.679

v(v + 0.001 42) 3001/2 

   By trial and error we find the specific volume,  v = 0.006683 m3/kg 
  Kay’s rule Eq.13.86 

  Pc mix = 0.6 × 5.04 + 0.4 × 6.14 = 5.48 MPa 

  Tc mix = 0.6 × 282.4 + 0.4 × 308.3 = 292.8 K 

    Reduced properties:   Pr = 
6

5.48 = 1.095,    Tr = 
300

292.8 = 1.025 

    Fig. D.1:   Z = 0.4   (difficult to read) 

  v = ZRT/P = 0.4 × 0.305 × 300 / 6000 = 0.0061 m3/kg   
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For the previous problem, find the specific heat transfer using Kay’s rule and the 
generalized charts. 

 
To do the EOS we need the gas constant, so from Eq.12.5 we get 

Mmix =  ∑ yi Mi = 0.6 × 28.054 + 0.4 × 26.068 = 27.26 

Rmix = 8.3145/27.26 = 0.305 kJ/kg K 

  cC2H4 = 
y M

Mmix
 = 

0.6 × 28.054
 27.26  = 0.6175,       cC2H4 = 1 - cC2H4 = 0.3825 

CP mix = ∑ ci CP i = 0.6175 × 1.548 + 0.3825 × 1.699 = 1.606 kJ/kg K 

  Kay’s rule Eq.13.86 
  Pc mix = 0.6 × 5.04 + 0.4 × 6.14 = 5.48 MPa 

  Tc mix = 0.6 × 282.4 + 0.4 × 308.3 = 292.8 K 

    Reduced properties 1:   Pr1 = 
6

5.48 = 1.095,    Tr1 = 
300

292.8 = 1.025 

  Fig. D.1:    (h
*
1 − h1) = 2.1 × RT

c
 = 2.1 × 0.305 × 292.8 = 187.5 kJ/kg 

    Reduced properties 2:   Pr2 = 
6

5.48 = 1.095,    Tr2 = 
400

292.8 = 1.366 

  Fig. D.1:   (h
*
2 − h2) = 0.7 × RT

c
 = 0.7 × 0.305 × 292.8 = 62.5 kJ/kg 

   The energy equation gives 

 1q2 = (h2 - h1) = (h2 − h
*
2) + (h

*
2 − h

*
1) + (h

*
1 − h1) 

       = -62.5 + 1.606 (400 – 300) + 187.5 

       = 285.6 kJ/kg mix 
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 One kmol/s of saturated liquid methane, CH4, at 1 MPa and 2 kmol/s of ethane, 
C2H6, at 250°C, 1 MPa are fed to a mixing chamber with the resultant mixture 
exiting at 50°C, 1 MPa. Assume that Kay’s rule applies to the mixture and 
determine the heat transfer in the process. 

Control volume the mixing chamber, inlet CH4 is 1, inlet C2H6 is 2 and the 
exit state is 3. Energy equation is 

 Q
.

CV
 = n

.
3
 h
-

3 -  n
.
1
 h
-

1  -  n
.
2
 h
-

2 

 Select the ideal gas reference temperature to be  T3  and use the 
generalized charts for all three states. 

 Pr1 = Prsat = 1/4.60 = 0.2174  =>   Trsat = 0.783,  

 T1 = 0.783 × 190.4 = 149.1 K,    ∆h1 = 4.57  

 Pr2 = 1/4.88 = 0.205,   Tr2 = 523/305.4 = 1.713,     ∆h2 = 0.08 

 h
-

1 =  C
-

1(T1 - T3) - ∆h1 R
-
Tc = 36.15(149.1 - 323.2) - 4.57 × 8.3145 × 190.4 

      = -13528 kJ/kmol 

 h
-

2 =  C
-

2(T2 - T3) - ∆h2 R
-
Tc = 53.11(250 - 50)  - 0.08 × 8.3145 × 305.4 

      = 10 419 kJ/kmol 

Kay’s rule Eq.13.86 

 Tcmix = (1 × 190.4 + 2 × 305.4)/3 = 267.1 K 

 Pcmix = (1 × 4.60 + 2 × 4.88)/3 = 4.79 MPa 

 Tr3 = 323.2/267.1 = 1.21  , Pr3 = 1/4.79 = 0.21,     ∆h3 = 0.15     

 h
-

3 = 0 - 0.15 × 267.1 × 8.3145 = - 333 kJ/kmol 

 Q
.

CV
 = 3(-333) - 1(-13528) - 2(10 419) = - 8309 kW 
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 A piston/cylinder initially contains propane at T = -7°C, quality 50%, and volume 
10L. A valve connecting the cylinder to a line flowing nitrogen gas at T = 20°C, P 
= 1 MPa is opened and nitrogen flows in. When the valve is closed, the cylinder 
contains a gas mixture of 50% nitrogen, 50% propane on a mole basis at T = 
20°C, P = 500 kPa. What is the cylinder volume at the final state, and how much 
heat transfer took place? 

State 1: Propane, T1 = -7oC,   x1 = 0.5,  V1 = 10 L 

Tc = 369.8 K, Pc = 4.25 kPa, CP = 1.679 kJ/kg-K,   M = 44.097 kg/kmol 

 Fig. D.1:     Tr1 = 0.72,   Pr1 = 0.12,    P1 = Pr1Pc = 510 kPa 

 Fig. D.1:    Zf1 = 0.020,    Zg1 = 0.88,    Z1 = (1 - x1)Zf1 + x1Zg1 = 0.45 

 n1 = P1V1/(Z1R
−

T1) = 510 × 0.01/(0.45 × 8.3145 × 266.2) = 0.00512 kmol 

 h
−

1 = h
−*

1o
 + C

−
P(T1 - To) + (h

−
1 - h

−*
1
) ;   h

−*
1o

 = 0,   

 (h
−*

1-h
−

1)f /R
−

Tc  = 4.79,    (h
−*

1-h
−

1)g /R
−

Tc = 0.25 

 h
−*

1 - h
−

1 = (1 - x1) (h
−*

1 - h
−

1)f + x1 (h
−*

1 - h
−

1)g  = 7748 kJ/kmol 

 h
−

1 = 0 + 1.679 × 44.094(-7 - 20) - 7748 = -9747 kJ/kmol 

Inlet: Nitrogen, Ti = 20oC, Pi = 1.0 MPa, 

Tc = 126.2 K, Pc = 3.39 MPa, Cpn = 1.042 kJ/kg-K, M = 28.013 kg/kmol 

 Tri = 2.323, Pri = 0.295,   h
−*

i -h
−

i = 0.06 × 8.3145 × 126.2 = 62.96 kJ/kmol 

 h
−

i = h
−*

io
 + C

−
Pn(Ti - To) + (h

−
i - h

−*
i
) ;   h

−*
io

 = 0,   Ti - To = 0 

State 2: 50% Propane, 50% Nitrogen by mol, T2 = 20oC, P2 = 500 kPa 

 Tcmix = ∑yiTci  = 248 K,     Pcmix = ∑yiPci = 3.82 MPa 

 Tr2 = 1.182,  Pr2 = 0.131,   Z2 = 0.97,   (h
−*

2 - h
−

2)/R
−

Tc  = 0.06 

 h
−

2 = h
−*

2o
 + C

−
Pmix(T2 - To) + (h

−
2 - h

−*
2
) ;   h

−*
2o

 = 0,    T2 - To = 0 

a)  ni = n1   =>   n2 = n1 + ni = 0.1024,    V2 = n2Z2R
−

T2/P2 = 0.0484 m3 

b)  1st Law:     Qcv + nih
-

i = n2u-2 - n21u-21 + Wcv;        u- = h
-
 - Pv- 

 Wcv =  (P1 + P2)(V2 - V1)/2 = 19.88 kJ 

 Qcv = n2h
-

2 - n1h
-

1 - nih
-

i - P2V2 + P1V1 + Wcv 

 h
−

i = -62.96 kJ/kmol, h
−

2 = -123.7 kJ/kmol, Qcv = 50.03 kJ 
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 Consider the following reference state conditions: the entropy of real saturated 
liquid methane at −100°C is to be taken as 100 kJ/kmol K, and the entropy of 
hypothetical ideal gas ethane at −100°C is to be taken as 200 kJ/kmol K. 
Calculate the entropy per kmol of a real gas mixture of 50% methane, 50% ethane 
(mole basis) at 20°C, 4 MPa, in terms of the specified reference state values, and 
assuming Kay’s rule for the real mixture behavior. 

 CH
4
: T

0
 = -100 oC,    s-

LIQ 0
 = 100 kJ/kmol K 

 C
2
H

6
: T

0
 = -100 oC,   P

0
 = 1 MPa,    s-

*
0 = 200 kJ/kmol K  

 Also for  CH
4
:  T

C
 = 190.4 K,   P

C
 = 4.60 MPa  

 For a 50% mixture Kay’s rule Eq.13.86: 

  Tcmix = 0.5 × 190.4 + 0.5 × 305.4 = 247.9 K 

  Pcmix = 0.5 × 4.60 + 0.5 × 4.88 = 4.74 MPa 

 IG MIX at T
0
(=-100 oC), P

0
(=1 MPa): 

    CH
4
: T

r0
 = 0.91 ,      P

G
 = 0.57 × 4.60 = 2.622 MPa 

 s-
*
0 CH4 = s-

LIQ 0 P
G

 + (s-*-s-
LIQ

)
at P

G
 - R

-
 ln (P

0
/P

G
) 

   = 100 + 4.01×8.3145 - 8.3145 ln (1/2.622) = 141.36 

 s-
*
0 MIX = 0.5×141.36 + 0.5×200 - 8.3145(0.5 ln 0.5 + 0.5 ln 0.5) = 176.44 

 C
-

P0 MIX
 = 0.5×16.04×2.254 + 0.5×30.07×1.766 = 44.629 

 s-
*
TP MIX = 176.44 + 44.629 ln 

293.2
173.2 - 8.3145 ln 

4
1  = 188.41 kJ/kmol K  

 For the mixture at T, P:  T
r
 = 1.183,    P

r
 = 0.844 

 Entropy departure     s-
*
TP MIX - s-

TP MIX
  = 0.4363×8.3145 = 3.63 kJ/kmol K 

 Therefore, 

    s-
TP MIX

 = 188.41 - 3.63 = 184.78 kJ/kmol K  

 

An alternative is to form the ideal gas mixture at T, P instead of at T
0
, P

0
 :   

 s-
*
TP CH4 = s-

LIQ 0
 + (s-*-s-

LIQ
) + C

-
P0 CH4

 ln 
T
T

0
 - R

-
 ln 

P
P

G
 

            P
G

, T
0
    at P

G
, T

0
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   = 100 + 33.34 + 16.04×2.254 ln 
293.2
173.2 - 8.3145 ln 

4
2.6 

   = 100 + 33.34 + 19.03 - 3.53 = 148.84 kJ/kmol K 

 s-
*
TP C2H6 = 200 + 30.07×1.766 ln 

293.2
173.2 - 8.3145 ln 

4
1 

   = 200 + 27.96 - 11.53 = 216.43  kJ/kmol K 

 s-
*
TP MIX = 0.5×148.84 + 0.5×216.43  

     - 8.3145(0.5 ln 0.5 + 0.5 ln 0.5)  = 188.41  kJ/kmol K 

 s-
TP MIX

 = 188.41 - 3.63 = 184.78 kJ/kmol K 
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 A cylinder/piston contains a gas mixture, 50% CO2 and 50% C2H6 (mole basis) 
at 700 kPa, 35°C, at which point the cylinder volume is 5 L. The mixture is now 
compressed to 5.5 MPa in a reversible isothermal process. Calculate the heat 
transfer and work for the process, using the following model for the gas mixture: 

  a. Ideal gas mixture. 

  b. Kay’s rule and the generalized charts. 

a) Ideal gas mixture 

    U2 - U1 = mC
v mix

(T2 - T1) = 0 

    Q12 = W12 = ⌡⌠ P dV = P1V1 ln(V2/V1) = - P1V1 ln(P2/P1)  

        = - 700 × 0.005 ln(5500/700) = -7.71 kJ 

b) Kay's rule 

    Tcmix = 0.5 × 304.1 + 0.5 × 305.4 = 304.75 K 

    Pcmix = 0.5 × 7.38 + 0.5 × 4.88 = 6.13 MPa 

    Tr1 = 308.15/304.75 = 1.011,   Pr1 = 0.7/6.13 = 0.1142 

    Z1 = 0.96,   ∆h1 = 0.12,   ∆s1 = 0.08 

    n = P1V1/Z1R
-

 T1 = 
700*0.005

0.962*8.3145*308.15 = 0.00142 kmol 

    Tr2 = Tr1 ,  Pr2 = 5.5/6.13 = 0.897, 

    Z2 = 0.58,    ∆h2 = 1.35,     ∆s2 = 1.0 

    h
-

2 - h
-

1 = (h
-

2 - h
-

1)  - R
-
 Tc(∆h2 - ∆h1)  

        = 0 - 8.3145 × 304.75(1.35 - 0.12) = - 3117 

    u-2 - u-1 = h
-

2 - h
-

1 + R
-
T(Z1 - Z2) = - 3117  

      + 8.3145 × 308.15(0.96 - 0.58) = -2143 kJ/kmol 

    Q12 = nT(s-2 - s-1)T = 0.00142 × 308.15 × 8.3145[ 0 - ln(5.5/0.7) -1.0  

   + 0.08 ] = - 10.85 kJ 

    W12 = Q12 - n(u-2 - u-1) = -10.85 - 0.00142(-2143) = - 7.81 kJ 
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 A cylinder/piston contains a gas mixture, 50% CO2 and 50% C2H6 (mole basis) 
at 700 kPa, 35°C, at which point the cylinder volume is 5 L. The mixture is now 
compressed to 5.5 MPa in a reversible isothermal process. Calculate the heat 
transfer and work for the process, using the following model for the gas mixture: 

  a. Ideal gas mixture. 

  b. The van der Waals equation of state. 

a) Ideal gas mixture 

    U2 - U1 = mC
v mix

(T2 - T1) = 0 

    Q12 = W12 = ⌡⌠ P dV = P1V1 ln(V2/V1) = - P1V1 ln(P2/P1)  

        = - 700 × 0.005 ln(5500/700) = -7.71 kJ 

b) van der waal's equation 

    For CO2 : 

       b = R
-

 Tc/8Pc = 8.3145 × 304.1/8 × 7380 = 0.04282 

       a = 27 Pc b2 = 27 × 7380 × 0.042822 = 365.45 

    For C2H6 : 

       b = R
-

 Tc/8Pc = 8.3145 × 305.4/8 × 4880 = 0.06504 

       a = 27 Pc b2 = 27 × 4880 × 0.065042 = 557.41 

    amix = (0.5 365.45 + 0.5 557.41)2 = 456.384 

    bmix = 0.5 × 0.04282 + 0.5 × 0.06504 = 0.05393 

    
8.3145*308.2
v-1 - 0.05393  - 

456.384
v-12  - 700 = 0  

    By trial and error:   v-1 = 3.5329 m3/kmol 

    
8.3145*308.2
v-2 - 0.05393  - 

456.384
v-22  - 5500 = 0   

    By trial and error:   v-2 = 0.2815 m3/kmol 

    n = V1/v-1 = 0.005/3.5329 = 0.00142  

    Q12 = nT(s-2 - s-1)T = n R
-

 T ln 
v-2 - b
v-1 - b 

   = 0.00142 × 8.3145 × 308.2 ln 
0.2815 - 0.05392
3.5329 - 0.05392  = - 9.93 kJ 

   U2-U1 = 0.00142 × 456.39(3.5329-1 - 0.2815-1) = -2.12 kJ 

   Q12 = U2-U1 + W12  =>  W12 = -9.93 -(-2.12) = -7.81 kJ  
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13.107 

 Consider a straight line connecting the point P = 0, Z = 1 to the critical point  
P = P

C
, Z = Z

C
 on a Z versus P compressibility diagram. This straight line will be 

tangent to one particular isotherm at low pressure. The experimentally determined 
value is about 0.8 T

C
.  Determine what value of reduced temperature is predicted 

by an equation of state, using the van der Waals equation and the Redlich–Kwong 
equation. See also note for Problem 13.56. 

 
 

slope = 
Z

C
 - 1

P
C
 - 0 

But also equals  lim
P→0

(∂Z
∂P

)T   for   T = T′ 

From solution 13.25 P C 

1.0 
Z 

C.P.

P 

Z C 

0 
 

  lim
P→0

(∂Z
∂P

)T  =  lim
P→0 

Z-1
P-0  =  

1
RT 

lim
P→0(v − 

RT
P ) 

VDW: using solution  13.25:      lim
P→0

(∂Z
∂P

)T = 
ZC - 1

PC
 = 

1
RT′[b − 

a
RT′] 

    or       (
1-ZC

PC
)(RT′)2 + bRT′ − a = 0 

    Substituting Z
C
 = 

3
8,    a = 

27
64 

R2T
2
C

PC
,    b = 

RTC

8PC
 

    40 T′ 2r  + 8 T′
r
 − 27 = 0     solving,    T′

r
 = 0.727 

 Redlich-Kwong:    using solution 13.25, 

 lim
P→0

(∂Z
∂P

)T = 
ZC-1
PC

 = 
1

RT′[b - 
a

RT′ 3/2]   or   (
1-ZC

PC
)R2T′ 5/2 + bRT′ 3/2 - a = 0 

 Substitute     ZC = 
1
3,    a = 0.42748 

R2T
5/2
C

PC
,     b = 0.08664 

RTC

PC
 

 get         
2
3 T′ 5/2

r  + 0.086 64 T′ 3/2
r  − 0.427 48 = 0 

      solving,    T′
r
 = 0.787 
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13.108 

 A 200-L rigid tank contains propane at 400 K, 3.5 MPa. A valve is opened, and 
propane flows out until half the initial mass has escaped, at which point the valve 
is closed. During this process the mass remaining inside the tank expands 

according to the relation Pv1.4 = constant. Calculate the heat transfer to the tank 
during the process. 

 C
3
H

8
: V = 200 L, T

1
 = 400 K, P

1
 = 3.5 MPa 

 Flow out to m
2
 = m

1
/2 ; Pv1.4 = const inside 

 Tr1 = 
400

369.8 = 1.082, Pr1 = 
3.5
4.25 = 0.824   Fig D.1: Z1 = 0.74 

 v1 = 
0.74×0.188 55×400

3500  = 0.01594,  v2 = 2v1 = 0.03188  

 m1 = 
0.2

0.015 94 = 12.55 kg,     m2 = 
1
2 m1 = 6.275 kg,  

 P2 = P1(
v1

v2
)1.4

 = 
3500

21.4  = 1326 kPa 

 


Pr2 = 

1.326
4.25  = 0.312 

P2v2 = Z2RT2

 

Trial & error: saturated with
T2 = 0.826×369.8 = 305.5 K &

Z2 = 
1326×0.03188
0.188 55×305.5

 = 0.734
 

 Z2 = ZF2 + x2(ZG2 - ZF2) = 0.734 = 0.05 + x2(0.78-0.05)    =>    x2 = 0.937 

 (h
*
1-h1) = 0.188 55×369.8(0.9) = 62.8 

 (h
*
2-h

*
1) = 1.6794(305.5-400) = -158.7 

 (h
*
2-h2) = (h

*
2-hF2) - x2hFG2 = 0.188 55×369.8[4.41 - 0.937(4.41-0.55)]   

   = 55.3 

 1st law: QCV = m2h2 - m1h1 + (P1-P2)V + mehe AVE 

 Let h
*
1 = 0 then     h1 = 0 + (h1-h

*
1) = -62.8 

 h
2
 = h

*
1 + (h

*
2-h

*
1) + (h

2
-h

*
2) = 0 - 158.7 – 55.3 = -214.0 

h
e AVE

 = (h
1
+h

2
)/2 = -138.4 

 Q
CV

 = 6.275(-214.0) - 12.55(-62.8) 

   + (3500-1326)×0.2 + 6.275(-138.4) = -981.4 kJ 
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13.109 

 A newly developed compound is being considered for use as the working fluid in 
a small Rankine-cycle power plant driven by a supply of waste heat. Assume the 
cycle is ideal, with saturated vapor at 200°C entering the turbine and saturated 
liquid at 20°C exiting the condenser. The only properties known for this 
compound are molecular weight of 80 kg/kmol, ideal gas heat capacity C

PO
= 0.80 

kJ/kg K and T
C
 = 500 K, P

C
 = 5 MPa. Calculate the work input, per kilogram, to 

the pump and the cycle thermal efficiency. 

 
 

Turbine 

Cond

Ht. 
Exch

P 
3 

1 

4 

2 

. 
Q H 

W 
. 
T

. 
-WP  

T
1
 = 200oC = 473.2 K,  x

1
 = 1.0 

T
3
 = 20oC = 293.2 K,  x

3
 = 0.0 

Properties known: 
M = 80,   C

PO
 = 0.8 kJ/kg K 

T
C
 = 500 K,  P

C
 = 5.0 MPa 

T
r1

 = 
473.2
500  = 0.946 ,   T

r3
 = 

293.2
500  = 0.586 

 
R = R/M = 8.31451/80 = 0.10393 kJ/kg K 

 From Fig. D.1, 

    P
r1

 = 0.72,   P
1
 = 0.72 × 5 = 3.6 MPa = P

4
   

    P
r3

 = 0.023, P
3
 = 0.115 MPa = P

2
 ,   Z

F3
 = 0.004   

    v
F3

 = 
ZF3RT3

P3
 = 

0.004 × 0.10393 × 293.2
115  = 0.00106 m3/kg 

    w
P
 = - ⌡⌠

3

4

 vdP ≈  v
F3

(P
4
 -P

3
) = -0.00106(3600-115) = -3.7 kJ/kg 

    q
H

 + h
4
 = h

1
  ,  but h

3
 = h

4
 + w

P
    =>      q

H
 = (h

1
-h

3
) + w

P
  

 From Fig. D.2: 

    (h
*
1-h

1
) = RT

C
 × 1.25  = 0.103 93 × 500 × 1.25 = 64.9 kJ/kg 

    (h
*
3-h

3
) = 0.103 93 × 500 × 5.2 = 270.2 kJ/kg 

    (h
*
1-h

*
3) = C

P0
(T

1
-T

3
) = 0.80(200-20) = 144.0 kJ/kg 
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    (h
1
-h

3
) = -64.9 + 144.0 + 270.2 = 349.3 kJ/kg 

    q
H

 = 349.3 + (-3.7) = 345.6 kJ/kg 

 Turbine,   (s
2
 - s

1
) = 0 = -(s

*
2 - s

2
)+(s

*
2 - s

*
1) + (s

*
1 - s

1
) 

 From Fig. D.3, 

    (s
*
1-s

1
) = 0.10393×0.99 = 0.1029 kJ/kg K 

    (s
*
2-s

*
1) = 0.80 ln 

293.2
473.2 - 0.103 93 ln 

115
3600 = -0.0250 

 Substituting, 

    s
*
2-s

2
 = +0.1029 - 0.0250 = 0.0779 = (s

*
2-s

F2
) - x

2
s

FG2
 

    0.0779 = 0.103 93×8.85 - x
2
×0.103 93(8.85-0.06)      =>  x

2
 = 0.922 

    (h
*
2-h

2
) = (h

*
2-h

F2
) - x

2
h

FG2
 

 From Fig. D.2, 

    h
FG2

 = 0.10393 × 500 (5.2-0.07) = 266.6 

    (h*
2-h

2
) = 270.2 -0.922 × 266.6 = 25.0 

   w
T
 = (h

1
-h

2
) = -64.9 + 144.0 + 25.0 = 104.1 kJ/kg 

            η
TH

 = 
w

NET

q
H

 = 
104.1-3.7

345.6  = 0.29  
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13.110 

 A cylinder fitted with a movable piston contains propane, initially at 67oC and 50 
% quality, at which point the volume is 2 L.  The piston has a cross-sectional area 

of 0.2 m2.  The external force on the piston is now gradually reduced to a final 
value of 85 kN, during which process the propane expands to ambient 
temperature, 4oC.  Any heat transfer to the propane during this process comes 
from a constant-temperature reservoir at 67oC, while any heat transfer from the 
propane goes to the ambient.  It is claimed that the propane does 30 kJ of work 
during the process.  Does this violate the second law? 

 

 
 

FextC  H3 8
 

+Q from Tres = 67oC 

-Q to Environment To = 4oC 

Fext 2 = 85 kN 

 

Propane: Tc= 369.8 K, Pc = 4.25 MPa, R = 0.18855 kJ/kg K, Cp = 1.679 kJ/kg K 

State 1: T1 = 67oC = 340.2 K,  x1 = 0.5,  V1 = 2.0 L 

 Tr1 = 0.92, Fig D.1,   Pr1 = 0.61,   P1 = Pr1Pc = 2.592 MPa 

 Zf1 = 0.10,   Zg1 = 0.64,   Z1 = (1 - x1)Zf1 + x1Zg1 = 0.37 

 m = 
P1V1

Z1RT1
 = 0.218 kg,  (h

*
1 − h1)f = 3.95 RTc , (h

*
1 − h1)g = 1.03 RTc  

 (s
*
1 − s1)f = 4.0 R ,    (s

*
1 − s1)g = 0.82 R 

State 2: T2 = 4oC = 277.2 K, Fext 2 = 85 kN 

 Tr2 = 0.75,   P
sat
2  = P

sat
r2 Pc = 0.165 × 4250 = 701 kPa 

 P2 = Fext 2/Ap = 425 kPa,    P2  <  P
sat
2       State 2 is a vapor 

 Pr2 = 0.10,   Z2 = 0.92,    V2 = mZ2RT2/P2 = 0.0247 m3 

 h
*
2 − h2  = 0.18 RTc =12.6 kJ/kg,     s

*
2 − s2 = 0.16 R = 0.0302 kJ/kg K 

1st Law: 1Q2 = m(u2 - u1) + 1W2;    1W2 = 30 kJ, u = h - Pv 

 1Q2 = m(h2 - h1) - P2V2 + P1V1 + 1W2 

 (h2 - h1) = (h2 − h
*
2) + (h

*
2 − h

*
1) + (h

*
1 − h1) 

 (h
*
1 − h1) = (1 - x1)(h

*
1 − h1)f + x1 (h

*
1 − h1)g =   173.6 kJ/kg 
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 h
*
2 − h

*
1  = Cp(T2 - T1) = -105.8 kJ/kg 

 1Q2 = 0.218 (-12.6 - 105.8 + 173.6) - 425×0.0247 + 2592×0.002 + 30  

 = 36.7 kJ 

2nd Law:    ∆Snet = m(s2 − s1) − 
1Q2
T  ;   Tres = 67oC = 340.2 K 

 s2 - s1 = (s2 − s
*
2) + (s

*
2 − s

*
1) + (s

*
1 − s1)  

 s
*
1 − s1 = (1 - x1)(s

*
1 − s1)f + x1 (s

*
1 − s1)g = 0.4544 kJ/kg-K 

 s
*
2 − s

*
1 = Cpln 

T2
T1

 - R ln 
P2
P1

 = -0.0030 kJ/kg K 

 ∆Snet = 0.218 (-0.0302-0.0030+0.4544) – 36.7/340.2 = -0.0161 kJ/K; 

∆Snet < 0       Process is Impossible 
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13.111 

 One kilogram per second water enters a solar collector at 40°C and exits at 
190°C, as shown in Fig. P13.111. The hot water is sprayed into a direct-contact 
heat exchanger (no mixing of the two fluids) used to boil the liquid butane. Pure 
saturated-vapor butane exits at the top at 80°C and is fed to the turbine. If the 
butane condenser temperature is 30°C and the turbine and pump isentropic 
efficiencies are each 80%, determine the net power output of the cycle. 

H
2
O cycle: solar energy input raises 1 kg/s of liquid H

2
O from 40oC to 190oC. 

Therefore, corresponding heat input to the butane in the heat exchanger is 

 Q
.

H
 = m

.
(h

F 190 C
-h

F 40 C
)
H2O

 = 1(807.62-167.57) = 640.05 kW 

 
 

Turbine 

Cond

Ht. 
Exch

P 
3 

1 

4 

2 

. 
Q H 

W 
. 
T

. 
-WP  

C
4
H

10
 cycle  

T
1
 = 80 oC, x

1
 = 1.0  ;  T

3
 = 30 oC, x

3
 = 0.0 

η
ST

 = η
SP

 = 0.80 

T
r1

 = 
353.2
425.2 = 0.831 

From D.1, D.2 and D.3: 
          P

1
 = 0.325×3800 = 1235 kPa 

    (h
*
1-h

1
) = 0.143 04×425.2×0.56 = 34.1 

    (s
*
1-s

1
) = 0.143 04×0.475 = 0.0680 

 T
r3

 = 
303.2
425.2 = 0.713 

 From D.1, D.2 and D.3:   P
3
 = 0.113×3800 = 429 kPa 

 sat. liq.:   (h*-h
F
) = RT

C
×4.81 = 292.5  ;           (s*-s

F
) = R×6.64 = 0.950 

 sat. vap.:   (h*-h
G

) = RT
C
×0.235 = 14.3  ;         (s*-s

G
) = R×0.22 = 0.031 

Because of the combination of properties of C
4
H

10
  (particularly the large C

P0

/R), s
1
 is larger than s

G
 at T

3
.  To demonstrate, 

 (s
*
1-s

*
G3) = 1.7164 ln 

353.2
303.2 - 0.143 04 ln 

1235
429  = 0.1107 

 (s
1
-s

G3
) = -0.0680 + 0.1107 + 0.031 = +0.0737 kJ/kg K 
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3
22s

1

s

T

 

so that T
2S

 will be  > T
3
, as shown in the T-s 

diagram. A number of other heavy hydrocarbons 
also exhibit this behavior. 
Assume T

2S
 = 315 K, T

r2S
 = 0.741 

 From D.2 and D.3: 

    (h
*
2S-h

2S
) = RT

C
×0.21 = 12.8      and       (s

*
2S-s

2S
) = R×0.19 = 0.027 

 (s
*
1-s

*
2S) = 1.7164 ln 

353.2
315  - 0.143 04 ln 

1235
429  = +0.0453 

 (s
1
-s

2S
) = -0.0680 + 0.0453 + 0.027 ≈ 0 

 ⇒ T
2S

 = 315 K 

 (h
*
1-h

*
2S) = 1.7164(353.2-315) = 65.6 

 w
ST

 = h
1
-h

2S
 = -34.1 + 65.6 + 12.8= 44.3 kJ/kg 

 w
T
 = η

S
×w

ST
 = 0.80×44.3 = 35.4 kJ/kg 

 At state 3, 

 v
3
 = 

0.019×0.143 04×303.2
429  = 0.001 92 m3/kg 

 -w
SP

 ≈ v
3
(P

4
-P

3
) = 0.001 92(1235-429) = 1.55 kJ/kg 

 -w
P
 = 

-w
SP

η
SP

 = 
1.55
0.8  = 1.94 kJ/kg 

 w
NET

 = w
T
 + w

P
 = 35.4 - 1.94= 33.46 kJ/kg 

 For the heat exchanger, 

    Q
.

H
 = 640.05 = m

.
C4H10

(h
1
-h

4
) 

 But    h
1
-h

4
 = h

1
-h

3
+w

P
  

 h
1
-h

3
 = (h

1
-h

*
1) + (h

*
1-h

*
3) + (h

*
3-h

3
) 

       = -34.1 + 1.716(80 - 30) + 292.5 = 344.2 kJ/kg 

 Therefore, 

  m
.

C4H10
 = 

640.05
344.2-1.94 = 1.87 kg/s 

  W
.

NET
 = m

.
C4H10

w
NET

 = 1.87 × 33.46 = 62.57 kW 
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13.112 

 A piston/cylinder contains ethane gas, initially at 500 kPa, 100 L, and at ambient 
temperature, 0°C.  The piston is now moved, compressing the ethane until it is at 
20°C, with a quality of 50%.  The work required is 25% more than would have 
been required for a reversible polytropic process between the same initial and 
final states. Calculate the heat transfer and the net entropy change for the process. 

Ethane:  Tc = 305.4 K, Pc = 4.88 MPa,  

  R = 0.2765 kJ/kg-K, Cp = 1.766 kJ/kg K 

State 1:  Tr1 = 0.895, Pr1 = 0.102       Z1 = 0.95 

 v1 = Z1RT1/P1 = 0.1435 m3/kg,     m1 = V1/v1 = 0.697 kg 

 (h
*
1 − h1) = 0.13RTc = 11.0 kJ/kg,    (s

*
1 − s1) = 0.09 R = 0.025 kJ/kg K 

State 2: T2 = 20oC,  x2 = 0.5,    1W2 = 1.25Wrev 

 Tr2 = 0.96,    Pr2 = 0.78,   P2 = Pr2Pc = 3806 kPa 

 Zf2 = 0.14,    Zg2 = 0.54,    Z2 = (1 - x2)Zf + x2Zg = 0.34 

 (h
*
2 − h2) = (1 - x2) 3.65 RTc + x2 (1.39 RTc) = 212.8 kJ/kg 

 (s
*
2 − s2) = (1 - x2) 3.45 R + x2 × 1.10 R = 0.629 kJ/kg K 

 v2 = Z2RT2/P2 = 0.0072 m3/kg,    V2 = mv2 = 0.005 m3 

 P1V
n
1 = P2V

n
2 ,    ln 

P2
P1

  = n ln 
V1
V2

      n = 0.6783 

 Wrev = ∫ P dV = 
P2V2 - P1V1

1 - n  = -96.3 kJ, 1W2 = 1.25Wrev = -120.4 kJ 

a)  1st Law: 1Q2 = m(u2 - u1) + 1W2;     u = h - Pv 

 h2 - h1 = (h2 − h
*
2) + (h

*
2 − h

*
1) + (h

*
1 − h1) 

  = -212.8 + 1.766(20 – 0) + 11.0 = -166.5 kJ/kg 

 u2 - u1 = (h2 - h1) - (P2v2 - P1v1) = -122.2 kJ/kg 

     1Q2 = 0.697(-122.2) - 120.4 = -205.6 kJ 

b)  2nd Law: ∆Snet = m(s2 - s1) - 1Q2 /To;    To = 0oC 

 s2 - s1 = (s2 − s
*
2) + (s

*
2 − s

*
1) + (s

*
1 − s1)  

 (s
*
2 − s

*
1) = Cp ln(T2 / T1) − R ln(P2 / P1) = -0.436 kJ/kg K,  

           ∆Snet = 0.697(-0.629 - 0.436 + 0.025) + 
205.6
273.2 = 0.028 kJ/K 
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13.113 

 An experiment is conducted at −100°C inside a rigid sealed tank containing liquid 
R-22 with a small amount of vapor at the top. When the experiment is done the 
container and the R-22 warms up to room temperature of 20°C. What is the 
pressure inside the tank during the experiment? If the pressure at room 
temperature should not exceed 1 MPa, what is the maximum percent of liquid by 
volume that can be used during the experiment? 

 R-22 tables   Go to -70 oC 
a) For h

FG
 ≈ const & 

   v
FG

 ≈ v
G

 ≈ RT/P
G

 

   ln 
P

G1

P
G0

 ≈ 
h

FG

R [ 1
T

0
 - 

1
T

1
] 

   extrapolating from -70 oC 

T 

v
1 

2 

-100 C
o 

20 Co 

  

 (Table B.4.1) to T
AVE

 = -85 oC, h
FG

 ≈ 256.5 

    Also R = 
8.3145
86.469 = 0.096 15 kJ/kg K 

    For T
0
 = 203.2 K & T

1
 = 173.2 K 

    ln(P
G1

20.5)= 
256.5

0.096 15 [ 1
203.2 - 

1
173.2] 

       P
G1

 = 2.107 kPa 

 b) Extrapolating v
F
 from -70 oC to T

1
 = -100 oC 

    v
F1

 ≈ 0.000 634 

    Also v
G1

 ≈ RT
1
/P

G1
 = 

0.096 15×173.2
2.107  = 7.9037 

    Since v
1
 = v

2
 ≈ v

F2
 = 0.000 824 

    0.000 824 = 0.000 634 + x
1
×7.9031  =>  x

1
 = 2.404×10-5 

    
V

LIQ 1

m  = (1-x
1
)v

F1
 = 0.000 634,  

V
VAP 1

m  = x
1
v

G1
 = 0.000 190 

    % LIQ, by vol. = 
0.000 634
0.000 824 ×100 = 76.9 % 
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13.114 
 The refrigerant R-152a, difluoroethane, is tested by the following procedure. A 

10-L evacuated tank is connected to a line flowing saturated-vapor R-152a at 
40°C. The valve is then opened, and the fluid flows in rapidly, so that the process 
is essentially adiabatic. The valve is to be closed when the pressure reaches a 
certain value P2, and the tank will then be disconnected from the line. After a 
period of time, the temperature inside the tank will return to ambient temperature, 
25°C, through heat transfer with the surroundings. At this time, the pressure 
inside the tank must be 500 kPa. What is the pressure P2 at which the valve 
should be closed during the filling process? The ideal gas specific heat of R-152a 
is CP0 = 0.996 kJ/kg K.   

 R-152a CHF2CH3 :   A.2:     M = 66.05, TC = 386.4 K, PC = 4.52 MPa,  

 T3 = T0 = 25oC, P3 = 500 kPa, R = R- /M = 8.3145/66.05 = 0.12588 

 Tr3 = 298.2/386.4 = 0.772,      Pr3 = 500/4520 = 0.111 

 From D.1 and D.2 at 3:  Z3 = 0.92,    (h*-h)3 = 0.19 RTC 

 ⇒    m3 = m2 = mi = 
P3V

Z3RT3
 = 

500×0.010
0.92×0.125 88×298.2

 = 0.145 kg 

Filling process:    Energy Eq.:      hi = u2 = h2 - Z2RT2 

      or       (h2-h
*
2) + CP0(T2-Ti) + (h

*
i -hi) - P2V/m2 = 0 

From D.2 with Tri = 313.2/386.4 = 0.811, 

    (h
*
i -hi) = 0.125 88×386.4×0.49 = 23.8  ;    Pi = 0.276×4520 = 1248 kPa 

Assume P2 = 575 kPa,   Pr2 = 0.127 

 Now assume T2 = 339 K, Tr2 = 0.877   =>    From D.1:  Z2 = 0.93 

 ⇒ 
Z2T2

P2
 = 

0.93×339
575  = 0.5483 ≈ 

Z3T3

P3
 = 

0.92×298.2
500  = 0.5487 

 ⇒ T2 = 339 K is the correct T2 for the assumed P2 of 575 kPa.  Now 
check the 1st law to see if 575 kPa is the correct P2. 

 From D.2,    h
*
2-h2 = 0.125 88×386.4×0.17 = 8.3 

Energy eq.: -8.3 + 0.996(339-313.2) + 23.8 - 
575×0.010

0.1456  = +1.5 ≈ 0 

   ⇒ P2 = 575 kPa 

 (Note: for P2 = 580 kPa, T2 = 342 K,    1st law sum = +4.2) 
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 Carbon dioxide gas enters a turbine at 5 MPa, 100°C, and exits at 1 MPa. If the 
isentropic efficiency of the turbine is 75%, determine the exit temperature and the 
second-law efficiency. 

      CO
2
 turbine:   η

S
 = w/w

S
 = 0.75 

    inlet: T
1
 = 100oC, P

1
 = 5 MPa,  exhaust: P

2
 = 1 MPa 

 a) P
r1

 = 
5

7.38 = 0.678, T
r1

 = 
373.2
304.1 = 1.227, P

r2
 = 

1
7.38 = 0.136 

    From D.2 and D.3, 

       (h
*
1-h

1
) = 0.188 92×304.1×0.52 = 29.9 

       (s
*
1-s

1
) = 0.188 92×0.30 = 0.0567 

    Assume T
2S

 = 253 K,   T
r2S

 = 0.832 

    From D.2 and D.3:     (h
*
2S-h

2S
) = RT

C
×0.20 = 11.5 

                   (s
*
2S-s

2S
) = R×0.17 = 0.0321 

    (s
*
2S-s

*
1) = 0.8418 ln 

253
373.2 - 0.188 92 ln 

1
5 = -0.0232 

    (s
2S

-s
1
) = -0.0321 - 0.0232 + 0.0567 ≈ 0 

    ⇒ T
2S

 = 253 K 

    (h
*
2S-h

*
1) = 0.8418(253-373.2) = -101.2 

    w
S
 = (h

1
-h

2S
) = -29.9 + 101.2 + 11.5 = 82.8 kJ/kg 

    w = η
S
×w

S
 = 0.75×82.8 = 62.1 kJ/kg = (h

1
-h

*
1) + (h

*
1-h

*
2) + (h

*
2-h

2
) 

    Assume T
2
 = 275 K, T

r2
 = 0.904 

       (h
*
1-h

*
2) = 0.8418(373.2-275) = 82.7 

    From D.2 and D.3, 

       (h
*
2-h

2
) = RT

C
×0.17 = 9.8  ;      (s

*
2-s

2
) = R×0.13 = 0.0245 

    Substituting, 

     w = -29.9 + 82.7 + 9.8 = 62.7 ≈ 62.1        ⇒ T
2
 = 275 K 

 b) (s
*
2-s

*
1) = 0.8418 ln 

275
373.2 - 0.188 92 ln 

1
5 = +0.0470 
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    (s
2
-s

1
) = -0.0245 + 0.0470 + 0.0567 = +0.0792 

    Assuming T
0
 = 25 oC, 

    (ϕ
1
-ϕ

2
) = (h

1
 - h

2
) - T

0
(s

1
 - s

2
)  = 62.1 + 298.2(0.0792) = 85.7 kJ/kg 

    η
2nd Law

 = 
w

ϕ
1
-ϕ

2
 = 

62.1
85.7 = 0.725 
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13.116 

 A 4- m3 uninsulated storage tank, initially evacuated, is connected to a line 
flowing ethane gas at 10 MPa, 100°C. The valve is opened, and ethane flows into 
the tank for a period of time, after which the valve is closed. Eventually, the 
whole system cools to ambient temperature, 0°C, at which time the it contains 
one-fourth liquid and three-fourths vapor, by volume. For the overall process, 
calculate the heat transfer from the tank and the net change of entropy. 

 Rigid tank V = 4 m3, m
1
 = 0 

 Line: C
2
H

6
 at P

i
 = 10 MPa, T

i
 = 100 oC 

 Flow in, then cool to    T
2
 = T

0
 = 0 oC,   V

LIQ 2
 = 1 m3 &  V

VAP 2
 = 3 m3 

 M = 30.07,    R = 0.2765,   C
P0

 = 1.766 

 P
ri
 = 

10
4.88 = 2.049,     T

ri
 = 

373.2
305.4 = 1.225 

 From D.2 and D.3, 

 (h
*
i -h

i
) = 0.2765×305.4×2.0 = 168.9  and     (s

*
i -s

i
) = 0.2765×1.22 = 0.3373 

 T
r2

 = 
273.2
305.4 = 0.895 

From D.1, D.2 and D.3,      P
2
 = P

G
 = 0.51×4880 = 2489 kPa 

sat. liq.: Z
F
 = 0.087 ;   (h*-h

F
) = RT

C
×4.09 = 345.4  ;  (s*-s

F
) = R×4.3 = 1.189 

sat. vap. : Z
G

 = 0.68 ;   (h*-h
G

) = RT
C
×0.87 = 73.5 ;  (s*-s

G
) = R×0.70 = 0.193 

 m
LIQ 2

 = 
2489×1

0.087×0.2765×273.2
 = 378.7 kg 

 m
VAP 2

 = 
2489×3

0.68×0.2765×273.2
  = 145.4 kg 

 m
2
 = 524.1 kg      =>       x

2
 = 

145.4
524.1 = 0.277 

 1st law: 

 Q
CV

 = m
2
u

2
 - m

i
h

i
 = m

2
(h

2
-h

i
) - P

2
V = m

2
[(h

2
-h

*
2) + (h

*
2-h

*
i ) + (h

*
i -h

i
)]- P

2
V 

    (h
*
2-h

*
i ) = 1.7662(0-100) = -176.6 

    (h
*
2-h

2
) = (1-x

2
)(h

*
2-h

F2
) + x

2
(h

*
2-h

G2
) 

            = 0.723 × 345.4 + 0.277 × 73.5 = 270.1 
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 Q
CV

 = 524.1[-270.1 - 176.6 + 168.9]- 2489 × 4  = -155 551 kJ 

 ∆S
NET

 = m
2
(s

2
-s

i
) - Q

CV
/T

0
 

 (s
2
-s

i
) = (s

2
-s

*
2) + (s

*
2-s

*
i ) + (s

*
i -s

i
) 

 (s
*
2-s

*
i ) = 1.7662 ln 

273.2
373.2 - 0.2765 ln 

2.489
10  = -0.1664 

 (s
*
2-s

2
) = (1-x

2
)(s

*
2-s

F2
) + x

2
(s

*
2-s

G2
)  

  = 0.723 ×1.189 + 0.277 × 0.193 = 0.9131 

 (s
2
-s

i
) = -0.9131 - 0.1664 + 0.3373 = -0.7422 

 ∆S
NET

 = 524.1(-0.7422) - 
-155 551

273.2  = 180.4 kJ/K 
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13.117 

 A 10- m3 storage tank contains methane at low temperature. The pressure inside 
is 700 kPa, and the tank contains 25% liquid and 75% vapor, on a volume basis. 
The tank warms very slowly because heat is transferred from the ambient. 

 a. What is the temperature of the methane when the pressure reaches 10 MPa? 

 b. Calculate the heat transferred in the process, using the generalized charts. 

 c. Repeat parts (a) and (b), using the methane tables, Table B.7. Discuss the 
differences in the results. 

 CH
4
: V = 10 m3, P

1
 = 700 kPa 

      V
LIQ 1

 = 2.5 m3, V
VAP 1

 = 7.5 m3 

a)   P
r1

 = 
0.70
4.60 = 0.152,  P

r2
 = 

10
4.60 = 2.174 

    From D.1: Z
F1

 = 0.025, Z
G1

 = 0.87 & 

               T
1
 = 0.74 × 190.4 = 140.9 K 

    v
F1

 = 
0.025×0.518 35×140.9

700  = 0.00261 

    v
G1

 = 
0.87×0.518 35×140.9

700  = 0.0908 

    m
LIQ 1

 = 
2.5

0.00261 = 957.9 kg, m
VAP 1

 = 
7.5

0.0908 = 82.6 kg 

         Total m = 1040.3 kg 

    v
2
 = v

1
 = 

V
m = 

10
1040.5 = 0.00961  = 

Z
2
×0.518 35×190.4×T

r2

10 000  

    or  Z
2
T

r2
 = 0.9737 at P

r2
 = 2.174 

    By trial and error 

      T
r2

 = 1.334 & Z
2
 = 0.73, T

2 
 = 1.334×190.4 = 254.0 K 

 b) 1st law: 

    Q
12

 = m(u
2
-u

1
) = m(h

2
-h

1
) - V(P

2
-P

1
) 

    Using D.2 & x
1
 = 

82.6
1040.5 = 0.0794 

    (h
*
1-h

1
) = (h

*
1-h

F1
) - x

1
h

FG1
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      = 0.518 35×190.4[4.72-0.0794(4.72-0.29)]  = 431.1 

    (h
*
2-h

*
1) = 2.2537(254.0-140.9) = 254.9 

    (h
*
2-h

2
) = 0.518 35×190.4(1.47) = 145.1 

    (h
2
-h

1
) = -145.1 + 254.9 + 431.1 = 540.9 kJ/kg 

    Q
12

 = 1040.5(540.9) - 10(10 000-700)  = 469 806 kJ 

 c) Using Table B.7 for CH
4
 

    T
1
 = T

SAT 1
 = 141.7 K,     v

F1
 = 0.002 675,    u

F1
 = -178.47 

    v
G1

 = 0.090 45 , u
G1

 = 199.84 

    m
LIQ 1

 = 
2.5

0.002 675 = 934.6, m
VAP 1

 = 
7.5

0.090 45  =  82.9 

    Total mass    m = 1017.5 kg    and       v
2
 = 

10
1017.5 = 0.009 828 m3/kg 

    At v
2
 & P

2
 = 10 MPa → 





 
T

2
 = 259.1 K

u
2
 = 296.11  

    Q
12

 = m(u
2
-u

1
)  = 1017.5×296.11 - 934.6(-178.47) - 82.9(199.84) 

        = 451 523 kJ 
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13.118 

 A gas mixture of a known composition is frequently required for different 
purposes, e.g., in the calibration of gas analyzers. It is desired to prepare a gas 
mixture of 80% ethylene and 20% carbon dioxide (mole basis) at 10 MPa, 25°C 
in an uninsulated, rigid 50-L tank. The tank is initially to contain CO2 at 25°C 
and some pressure P1. The valve to a line flowing C2H4 at 25°C, 10 MPa, is now 
opened slightly, and remains open until the tank reaches 10 MPa, at which point 
the temperature can be assumed to be 25°C. Assume that the gas mixture so 
prepared can be represented by Kay’s rule and the generalized charts. Given the 
desired final state, what is the initial pressure of the carbon dioxide, P1?  

 
 A = C

2
H

4
, B = CO

2
 

T
1
 = 25 oC 

P
2
 = 10 MPa, T

2
 = 25 oC 

y
A2

 = 0.8, y
B2

 = 0.2 

���������
���������
���������
���������

�����������������
�����������������
�����������������
�����������������
B 

P =10 MPa i 

T = 25 Co i 

A 

V=0.05 m3 

 
  

Mixture at 2 : 

    P
C2

 = 0.8 × 5.04 + 0.2 × 7.38 = 5.508 MPa 

        T
C2

 = 0.8 × 282.4 + 0.2 × 304.1 = 286.7 K 

    T
r2

 = 298.15/286.7 = 1.040; P
r2

 = 10/5.508 = 1.816 

    D.1 :    Z
2
 = 0.32 

    n
2
 = 

P
2
V

Z
2
R
-
T

2
 = 

10 000×0.05
0.32×8.3145×298.2

 = 0.6302 kmol 

    n
A2

 = n
i
 = 0.8 n

2
 = 0.5042 kmol C

2
H

4
 

    n
B2

 = n
1
 = 0.2 n

2
 = 0.1260 kmol CO

2
 

    T
r1

 = 
298.2
304.1 = 0.981 

    P
r1

 = 
n

1
Z

B1
R
-
T

1

P
CB

V  = 
0.126 Z

B1
× 8.3145×298.2

7380×0.05
 = 0.8466 Z

B1
 

    By trial & error: P
r1

 = 0.618 & Z
B1

 = 0.73 

    ⇒ P
1
 = 0.618 × 7.38 = 4.56 MPa 
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13.119 
 Determine the heat transfer and the net entropy change in the previous problem. 

Use the initial pressure of the carbon dioxide to be 4.56 MPa before the ethylene 
is flowing into the tank. 

 A gas mixture of a known composition is frequently required for different 
purposes, e.g., in the calibration of gas analyzers. It is desired to prepare a gas 
mixture of 80% ethylene and 20% carbon dioxide (mole basis) at 10 MPa, 25°C 
in an uninsulated, rigid 50-L tank. The tank is initially to contain CO2 at 25°C 
and some pressure P1. The valve to a line flowing C2H4 at 25°C, 10 MPa, is now 
opened slightly, and remains open until the tank reaches 10 MPa, at which point 
the temperature can be assumed to be 25°C. Assume that the gas mixture so 
prepared can be represented by Kay’s rule and the generalized charts. Given the 
desired final state, what is the initial pressure of the carbon dioxide, P1?  

 
 A = C

2
H

4
, B = CO

2
 

T
1
 = 25 oC 

P
2
 = 10 MPa, T

2
 = 25 oC 

y
A2

 = 0.8, y
B2

 = 0.2 

���������
���������
���������
���������

�����������������
�����������������
�����������������B 

P =10 MPa i 

T = 25 Co i 

A 

V=0.05 m3 

 
 Mixture at 2 : 

    P
C2

 = 0.8 × 5.04 + 0.2 × 7.38 = 5.508 MPa 

        T
C2

 = 0.8 × 282.4 + 0.2 × 304.1 = 286.7 K 

    T
r2

 = 298.15/286.7 = 1.040; P
r2

 = 10/5.508 = 1.816 

    D.1 :    Z
2
 = 0.32 

    n
2
 = 

P
2
V

Z
2
R
-
T

2
 = 

10 000×0.05
0.32×8.3145×298.2

 = 0.6302 kmol 

    n
A2

 = n
i
 = 0.8 n

2
 = 0.5042 kmol C

2
H

4
 

    n
B2

 = n
1
 = 0.2 n

2
 = 0.1260 kmol CO

2
 

    T
r1

 = 
298.2
304.1 = 0.981  and     P

r1
 = 

4560
7380 = 0.618 

 1st law: Q
CV

 + n
i
h
-

i
 = n

2
u-

2
 - n

1
u-

1
 = n

2
h
-

2
 - n

1
h
-

1
 - (P

2
-P

1
)V 

    or Q
CV

 = n
2
(h
-

2
-h
-*

2) - n
1
(h
-

1
-h
-*

1) - n
i
(h
-

i
-h
-*

i ) - (P
2
-P

1
)V 

    (since T
i
 = T

1
 = T

2
, h

-*
i  = h

-*
1 = h

-*
2) 
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    (h
-*

1-h
-

1
) = 0.83 × 8.3145 × 304.1 = 2099 kJ/kmol 

    (h
-*

2-h
-

2
) = 3.40 × 8.3145 × 286.7 = 8105 kJ/kmol 

    T
ri
 = 

298.2
282.4 = 1.056, P

ri
 = 

10
5.04 = 1.984 

    (h
-*

i -h
-

i
) = 3.35×8.3145×282.4 = 7866 kJ/kmol 

 Q
CV

 = 0.6302(-8105) - 0.126(-2099) - 0.5042(-7866) - (10 000-4560)×0.05 

          = -1149 kJ 

    ∆S
CV

 = n
2
s-

2
 - n

1
s-

1
 ,   ∆S

SURR
 = - Q

CV
/T

0
 - n

i
s-

i
 

    ∆S
NET

 = n
2
s-

2
 - n

1
s-

1
 - Q

CV
/T

0
 - n

i
s-

i
 

    Let s-
*
A0 = s-

*
B0 = 0 at T

0
 = 25 oC, P

0
 = 0.1 MPa 

    Then s-
*
MIX 0 = -8.3145 (0.8 ln 0.8 + 0.2 ln 0.2)  = 4.161 kJ/kmol K 

    s-
1
 = s-

*
B0 + (s-

*
P1 T1-s-

*
P0 T0)

B
 + (s-

1
-s-

*
P1 T1)

B
 

       = 0 + (0-8.3145 ln 
4.56
0.1 ) - 0.60 × 8.3145 = -36.75 kJ/kmol K 

    s-
i
 = s-

*
A0 + (s-

*
Pi Ti-s

-*
P0 T0)

A
 + (s-

i
-s-

*
Pi Ti)A

 

       = 0 + (0-8.3145 ln 
10
0.1) - 2.44×8.3145 = -58.58 kJ/kmol K 

    s-
2
 = s-

*
MIX 0 + (s-

*
P2 T2-s-

*
P0 T0)

MIX
 + (s-

2
-s-

*
P2 T2)

MIX
 

       = 4.161 + (0-8.3145 ln 
10
0.1) - 2.551×8.3145 = -55.34 kJ/kmol K 

    ∆S
NET

 = 0.6302(-55.33) - 0.126(-36.75) - 0.5042(-58.58) + 1149/298.2  

         = +3.15 kJ/K 
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