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  SUBSECTION    PROB NO. 
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Correspondence List 
 
 The correspondence between the new English unit problem set and the previous 

5th edition chapter 11 problem set and the current SI problems. 

 

New 5th SI New 5th SI New 5th SI 
167 117 mod 21 184 new 73 201 148b 118 
168 118 mod 22 185 133 74 202 new - 
169 new 24 186 136 86 203 149 120 
170 119 26 187 137 89 204 150 121 
171 120 27 188 138 93 205 151 125 
172 new 32 189 139 95 206 new 130 
173 121 mod 33 190 new 97 207 new 137 
174 122 mod 35 191 new 98 208 new 146 
175 123 mod 37 192 141 104 209 155 147 
176 125 mod 45 193 140 105 210 new 148 
177 124 48 194 142 107 211 new 150 
178 127 mod 55 195 143 109 212 154 144 
179 128 mod 57 196 144 112 213 126 - 
180 129 60 197 145 113 214 130 157 
181 131 mod 66 198 146 114 215 134 160 
182 132 71 199 147 116 216 135 160 
183 new 72 200 148a 117 217 153 134 
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11.167E 
 A steam power plant, as shown in Fig. 11.3, operating in a Rankine cycle has 

saturated vapor at 600 lbf/in.2 leaving the boiler. The turbine exhausts to the 

condenser operating at 2.225 lbf/in.2. Find the specific work and heat transfer in 
each of the ideal components and the cycle efficiency. 

Solution: 

For the cycle as given: 

 1:   h
1
 = 97.97 Btu/lbm,  v

1
 = 0.01625 ft3/lbm,    

 3:   h
3
 = h

g
 = 1204.06 Btu/lbm,  s

3
 = s

g
 = 1.4464 Btu/lbm R 

C.V. Pump  Reversible and adiabatic. 

 Energy:  wp =  h2 - h1 ;     Entropy:   s2 =  s1  

 since incompressible it is easier to find work (positive in) as  

  w
P
 = ∫ v dP  = v

1
(P

2
 - P

1
) = 0.01625(600 – 2.2)

144
778 = 1.8 Btu/lbm 

    h
2
 = h

1
 + w

P
 = 97.97 + 1.8 = 99.77 Btu/lbm 

C.V. Boiler:  q
H

 = h
3
 - h

2
 = 1204.06 - 99.77 = 1104.3 Btu/lbm 

C.V. Tubine:  w
T
 = h

3
 - h

4
,   s

4
 = s

3
 

    s
4
 = s

3
 = 1.4464 = 0.1817 + x

4
 × 1.7292    =>   x

4
 = 0.7314,  

    h
4
 = 97.97 + 0.7314 × 1019.78 = 843.84 Btu/lbm 

    w
T
 = 1204.06 - 843.84 = 360.22 Btu/lbm 

    η
CYCLE

 = (w
T
 - w

P
)/q

H
 = (360.22 - 1.8)/1104.3 = 0.325 

C.V. Condenser:    q
L
 = h

4
 - h

1
 = 843.84 - 97.97 = 745.9 Btu/lbm 
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11.168E 
 Consider a solar-energy-powered ideal Rankine cycle that uses water as the 

working fluid. Saturated vapor leaves the solar collector at 350 F, and the 

condenser pressure is 0.95 lbf/in.2. Determine the thermal efficiency of this cycle. 
 
 H

2
O   ideal Rankine cycle 

CV: turbine 
 State 3:   Table F.7.1     h

3
 = 1193.1  Btu/lbm,  s

3
 = 1.5793 Btu/lbm R 

     s
4
 = s

3
 = 1.5793 = 0.1296 + x

4
 × 1.8526        =>       x

4
 = 0.7825 

      h
4
 = 68.04 + 0.7825 × 1036.98 = 879.5 Btu/lbm 

 w
T
 = h

3
 - h

4
 = 1193.1 - 879.5  = 313.6 Btu/lbm 

    w
P 

= ∫ vdP ≈ v
1
(P

2
 - P

1
) = 0.01613(134.54 – 0.95) 

144
778 = 0.4 Btu/lbm 

    ⇒  w
NET

 = w
T
 - w

P
 = 313.6 - 0.4 = 313.2 Btu/lbm 

    h
2
 = h

1
 + w

P
 = 68.04 + 0.4 = 68.44 Btu/lbm 

    q
H

 = h
3
 - h

2
 = 1193.1 - 68.44 = 1124.7 Btu/lbm 

    η
TH

 = w
NET

/q
H

 = 313.2/1124.7 = 0.278 
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11.169E 

  A Rankine cycle uses ammonia as the working substance and powered by solar 
energy. It heats the ammonia to 320 F at 800 psia in the boiler/superheater. The 
condenser is water cooled, and the exit is kept at 70 F. Find (T, P, and x if 
applicable) for all four states in the cycle. 

  
 NH

3
   ideal Rankine cycle 

 
 State 1:  Table F.8.1, T = 70 F,   x = 0,   P

1
 = 128.85 psia,   

h
1
 = 120.21 Btu/lbm,   v

1
 = 0.2631 ft3/lbm 

 CV  Pump: 

 w
P 

= h
2
 - h

1
 = ∫ vdP ≈ v

1
(P

2
 - P

1
) = 0.02631(800 – 128.85) 

144
778  

  = 3.27 Btu/lbm    

 h
2
 = h

1
 + w

P
 = 120.21 + 3.27 = 123.48 Btu/lbm = h

f
    =>  T

2
 = 72.8 F 

 [we need the computer software to do better  (P
2
, s

2
 = s

1
) ] 

 State 3:  320 F, 800 psia :   superheated vapor,   s
3
 = 1.1915 Btu/lbm 

CV: turbine 
     s

4
 = s

3
 = 1.1915 = 0.2529 + x

4
 × 0.9589       =>       x

4
 = 0.9788 

   P
4
 = P

1
 = 128.85 psia,   T

4
 = T

1
 = 70 F 
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11.170E  
  A supply of geothermal hot water is to be used as the energy source in an ideal 

Rankine cycle, with R-134a as the cycle working fluid. Saturated vapor R-134a 
leaves the boiler at a temperature of 180 F, and the condenser temperature is 100 
F. Calculate the thermal efficiency of this cycle. 

 

Solution: 

CV: Pump   (use R-134a Table F.10) 
      P

1
 = 138.93 psia,    P

2
 = P

3
 = 400.4 psia 

      h
3
 = 184.36 Btu/lbm,    s

3
 = 0.402 Btu/lbm R 

       h
1
 = 108.86 Btu/lbm,  v

1
 = 0.01387 ft3/lbm 

  wP = h2 - h1 = ⌡⌠
1

2

 vdP ≈ v1(P2-P1) 

                  = 0.01387(400.4 - 138.93) 
144
778 = 0.671 Btu/lbm  

          h
2
 = h

1
 + w

P
 = 108.86 + 0.671 = 109.53 Btu/lbm 

CV: Boiler 

       q
H

 = h
3
 - h

2
 = 184.36 - 109.53 = 74.83 Btu/lbm 

CV: Turbine 

       s
4
 = s

3
 = 0.402  ⇒  x

4
 = (0.402 - 0.2819)/0.1272 = 0.9442 

       h
4
 = 176.08 Btu/lbm,   

 Energy Eq.:      w
T
 = h

3
 - h

4
 = 8.276 Btu/lbm 

       wNET = wT - wP = 8.276 - 0.671 = 7.605 Btu/lbm 

       η
TH

 =  wNET / q
H

 =  7.605/74.83 = 0.102 
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11.171E 

   Do Problem 11.170 with R-22 as the working fluid. 

Standard Rankine cycle with properties from the R-22 tables, 

       h
1
 = 39.267 Btu/lbm,  v

1
 = 0.01404 ft3/lbm,  P

1
 = 210.6 psia, 

       P
2
 = P

3
 = 554.8 psia,  h

3
 = 110.07 Btu/lbm,  s

3
 = 0.1913 Btu/lbm R 

CV: Pump    w
P
 = v

1
(P

2
-P

1
) = 0.01404 (554.8-210.6)

144
778 = 0.894 Btu/lbm 

   h
2
 = h

1
 + w

P
 = 39.267 + 0.894 = 40.16 Btu/lbm 

CV: Turbine   s
4
 = s

3
   

          ⇒  x
4
 = (0.1913 - 0.07942)/0.13014 = 0.9442 

       h
4
 = 101.885 Btu/lbm,  w

T
 = h

3
 - h

4
 = 8.185 Btu/lbm 

CV: Boiler 

       q
H

 = h
3
 - h

2
 = 110.07 - 40.16 = 69.91 Btu/lbm 

       η
TH

 = (w
T
 − w

P
)/q

H
 = (8.185 - 0.894)/157.21 = 0.104 
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11.172E 

  A smaller power plant produces 50 lbm/s  steam at 400 psia, 1100 F, in the boiler. 
It cools the condenser with ocean water coming in at 55 F and returned at 60 F so 
that the condenser exit is at 110 F. Find the net power output and the required 
mass flow rate of the ocean water. 

Solution: 

The states properties from Tables F.7.1 and F.7.2 

1: 110 F,  x = 0:  h1 = 78.01 Btu/lbm,  v1 = 0.01617 ft3/lbm,  Psat = 1.28 psia 

3: 400 psia, 1100 F:     h3 = 1577.44 Btu/lbm,    s3 = 1.7989 Btu/lbm R  

C.V. Pump  Reversible and adiabatic. 

 Energy:  wp =  h2 - h1 ;     Entropy:   s2 =  s1  

 since incompressible it is easier to find work (positive in) as  

  wp = ∫ v dP = v1 (P2 - P1) = 0.01617 (400 - 1.3)
144
778 = 1.19 Btu/lbm 

C.V. Turbine : wT =  h3 - h4  ;  s4 =  s3   

  s4 = s3 = 1.7989 = 0.1473 + x4 (1.8101)     =>       x4 = 0.9124 

   =>  h4 = 78.01 + 0.9124 (1031.28) = 1018.95 Btu/lbm 

        wT = 1577.44 – 1018.95 = 558.5 Btu/lbm 

  W
.

NET = m
.

(wT – wp) = 50 (558.5 – 1.19) = 27 866 Btu/s 

C.V. Condenser : qL = h4 - h1 = 1018.95 - 78.01 = 940.94 Btu/lbm 

  Q
.

L = m
.

qL = 50 × 940.94 = 47 047 Btu/s = m
.

ocean Cp ∆T 

  m
.

ocean = Q
.

L / Cp ∆T = 47 047 / (1.0 × 5) = 9409 lbm/s 
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11.173E 
  The power plant in Problem 11.167 is modified to have a superheater section 

following the boiler so the steam leaves the super heater at 600 lbf/in.2, 700 F. 
Find the specific work and heat transfer in each of the ideal components and the 
cycle efficiency. 

Solution: 

For this cycle from Table F.7 

State 3: Superheated vapor     h
3
 = 1350.62 Btu/lbm,  s

3
 = 1.5871 Btu/lbm R,   

State 1: Saturated liquid         h
1
 = 97.97 Btu/lbm,  v

1
 = 0.01625 ft3/lbm 

C.V. Pump:   Adiabatic and reversible. Use incompressible fluid so  

 w
P
 = ⌡⌠v dP = v

1
(P

2
 - P

1
) = 0.01625(600 – 2.2)

144
778 = 1.8 Btu/lbm 

    h
2
 = h

1
 + w

P
 = 95.81 Btu/lbm 

C.V. Boiler:         q
H

 = h
3
 - h

2
 = 1350.62 - 97.97 = 1252.65 Btu/lbm 

C.V. Tubine:        w
T
 = h

3
 - h

4
,         s

4
 = s

3
 

        s
4
 = s

3
 = 1.5871 Btu/lbm R = 0.1817 +  x

4
 1.7292   ⇒   x

4
 = 0.8127,   

          h
4
 = 97.97 + 0.8127 × 1019.78 = 926.75 Btu/lbm 

    w
T
 = 1350.62 - 926.75 = 423.87 Btu/lbm 

    η
CYCLE

 = (w
T
 - w

P
)/q

H
 = (423.87 - 1.8)/1252.65 = 0.337 

C.V. Condenser:  

    q
L
 = h

4
 - h

1
 = 926.75 - 97.97 = 828.8 Btu/lbm 
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11.174E 
  Consider a simple ideal Rankine cycle using water at a supercritical pressure. 

Such a cycle has a potential advantage of minimizing local temperature 
differences between the fluids in the steam generator, such as the instance in 
which the high-temperature energy source is the hot exhaust gas from a gas-
turbine engine. Calculate the thermal efficiency of the cycle if the state entering 

the turbine is 8000 lbf/in.2, 1300 F, and the condenser pressure is 0.95 lbf/in.2. 
What is the steam quality at the turbine exit? 

 

Solution: 

For the efficiency we need the net work and steam generator heat transfer. 

State 1:   s1 = 0.1296  Btu/lbm R,   h1 = 68.04 Btu/lbm 

State 3:   h3 = 1547.5 Btu/lbm,   s
3
 = 1.4718 Btu/lbm R 

C.V. Pump. For this high exit pressure we use Table F.7.3 to get state 2. 

Entropy Eq.:    s2 = s1    =>    h2 = 91.69 Btu/lbm  

   wp = h2 - h1 = 91.69 – 68.04 = 23.65 Btu/lbm 

C.V. Turbine. Assume reversible and adiabatic. 
Entropy Eq.: s

4
 = s

3
 = 1.4718 = 0.1296 + x

4
×1.8526 

       x
4
 = 0.7245         Very low for a turbine exhaust 

  h4 = 68.04 + x4 × 1036.98 = 751.29 Btu/lbm,      

  wT = h3 - h4 = 796.2 Btu/lbm 

Steam generator:       qH = h3 - h2 = 1547.5 – 91.69 = 1455.8 Btu/lbm 

  wNET = wT − wp = 796.2 – 23.65 = 772.6 Btu/lbm 

    η = wNET/qH = 772.6 / 1455.8 = 0.53 

 

 P
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11.175E 

  Consider an ideal steam reheat cycle in which the steam enters the high-pressure 

turbine at 600 lbf/in.2, 700 F, and then expands to 150 lbf/in.2. It is then reheated 

to 700 F and expands to 2.225 lbf/in.2 in the low-pressure turbine. Calculate the 
thermal efficiency of the cycle and the moisture content of the steam leaving the 
low-pressure turbine. 

Solution: 

Basic Rankine cycle with a reheat section. For this cycle from Table F.7 

State 3: Superheated vapor     h
3
 = 1350.62 Btu/lbm,  s

3
 = 1.5871 Btu/lbm R,   

State 1: Saturated liquid         h
1
 = 97.97 Btu/lbm,  v

1
 = 0.01625 ft3/lbm 

C.V. Pump:   Adiabatic and reversible. Use incompressible fluid so  

 

      w
P
 = ⌡⌠v dP = v

1
(P

2
 - P

1
)  

           = 0.01625(600 – 2.2)
144
778 = 1.8 Btu/lbm 

       h
2
 = h

1
 + w

P
 = 95.81 Btu/lbm 

 

C.V. Tubine 1:        w
T1

 = h
3
 - h

4
,         s

4
 = s

3
 

T

s
1

2

3

4

5

6

 

    s
4
 = s

3
 = 1.5871 Btu/lbm R     =>     h

4
 = 1208.93 Btu/lbm 

    w
T1

 = 1350.62 - 1208.93 = 141.69 Btu/lbm 

C.V. Tubine 2:        w
T2

 = h
5
 - h

6
,         s

6
 = s

5
 

State 5: h
5
 = 1376.55 Btu/lbm,   s5 = 1.7568 Btu/lbm R 

State 6: s
6
 = s

5
 = 1.7568 = 0.1817 + x

6
 × 1.7292   =>    x

6
 = 0.9109 

  h
6
 = 97.97 + 0.9109 × 1019.78 = 1026.89 Btu/lbm 

  w
T2

 = 1376.55 – 1026.89 = 349.66 Btu/lbm 

 w
T,tot

 = wT1 + wT2 = 141.69 + 349.66 = 491.35 Btu/lbm    

C.V. Boiler:         q
H1

 = h
3
 - h

2
 = 1350.62 - 97.97 = 1252.65 Btu/lbm 

 q
H

 = q
H1

 + h
5
 - h

4
 = 1252.65 + 1376.55 – 1208.93 = 1420.3 Btu/lbm 

 η
CYCLE

 = (w
T,tot

 - w
P
)/q

H
 = (491.35 – 1.8)/1420.3 = 0.345 
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11.176E 

  Consider an ideal steam regenerative cycle in which steam enters the turbine at 

600 lbf/in.2, 700 F, and exhausts to the condenser at 2.225 lbf/in.2. Steam is 

extracted from the turbine at 150 lbf/in.2 for an open feedwater heater. The 
feedwater leaves the heater as saturated liquid. The appropriate pumps are used 
for the water leaving the condenser and the feedwater heater. Calculate the 
thermal efficiency of the cycle and the net work per pound-mass of steam. 

 
 From Table F.7.2 

   h
5
 = 1350.62 Btu/lbm,    

   s
5
 = 1.5871 Btu/lbm R 

   h
1
 = 97.97 Btu/lbm,   

   v
1
 = 0.01625 ft3/lbm 

Interpolate to get 

   h
3
 = 330.67 Btu/lbm,   

   v
3
 = 0.01809 ft3/lbm 

ST. 
GEN.

P1 P2 
FW  
HTR 

COND. 

TURBINE.

4

3

5

6
7

1
2

 

  
C.V. Pump1: 

  w
P12

 = 0.01625(150 – 2.2)
144
778  

           = 0.44 Btu/lbm = h
2
 – h

1
 

      h
2
 = h

1
 + w

P12
 = 98.41 Btu/lbm 

 
C.V. Pump2: 

 

2.2 psi

150 psi

600 psi

1

2

4

3

7

6

5

T

s  
       
   w

P34
 = 0.01809(600 - 150)144/778 = 1.507 Btu/lbm 

      ⇒     h
4
 = h

3
 + w

P34
 = 332.18 Btu/lbm 

C.V. Turbine (high pressure section) 
2nd law:    s

6
 = s

5
 = 1.5871  Btu/lbm R      =>    h

6
 = 1208.93 Btu/lbm 

CV: feedwater heater, call the extraction fraction   y = m
.

6
/m

.
3
 

Continuity Eq.:    m
.

3
 = m

.
6
 + m

.
2
,     Energy Eq.: m

.
6
h

6
 + m

.
2
h

2
 = m

.
3
h

3
 

           y
6
h

6
 + (1 - y

6
)h

2
 = h

3
       ⇒     y

6
 = (h

3
 – h

2
)/(h

6
 – h

2
)  

         ⇒      y
6
 = (330.67 – 98.41)/(1208.93 – 98.41) = 0.2091     
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CV: Turbine from 5 to 7 

  s
7
 = s

5
     ⇒  x

7
 = (1.5871 - 0.1817)/1.7292 = 0.8127 

  h
7
 = 97.97 + 0.8127 × 1019.78 = 926.75 Btu/lbm 

  

    w
T
 = (h

5
 - h

6
) + (1• - y

6
)(h

6
 - h

7
)  

          = (1350.62 – 1208.93) + 0.7909(1208.93 - 926.75) = 364.87 Btu/lbm 

CV: pumps 

    w
P
 = (1 - y

6
)w

P12
 + w

P34
 = 0.7909 × 0.44 + 1 × 1.507 = 1.855 Btu/lbm 

    w
NET

 = w
T
 - w

P
 = 364.87 - 1.855 = 363.0 Btu/lbm 

CV: steam generator 

    q
H

 = h
5
 - h

4
 = 1350.62 – 332.18 = 1018.44 Btu/lbm 

    η
TH

 = w
NET

/q
H

 = 363/1018.44 = 0.356 
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11.177E 

  A closed feedwater heater in a regenerative steam power cycle heats 40 lbm/s of 

water from 200 F, 2000 lbf/in.2 to 450 F, 2000 lbf/in.2. The extraction steam from 

the turbine enters the heater at 600 lbf/in.2, 550 F and leaves as saturated liquid. 
What is the required mass flow rate of the extraction steam? 

 

 
 

24

6

6a
 

  From the steam tables F.7: 
F.7.3:     h2 = 172.6  Btu/lbm 

F.7.3:     h4 = 431.13  Btu/lbm 

F.7.2:     h6 = 1255.36 Btu/lbm 

Interpolate for this state 
F.7.1:     h6a = 471.56  Btu/lbm 

C.V. Feedwater Heater 

 Energy Eq.: m
.

2h2 + m
.

6h6 = m
.

2h4 + m
.

6h6a 

Since all four state are known we can solve for the extraction flow rate 

         m
.

6 = m
.

2 
h2 - h4
h6a - h6

 = 40 
172.6 - 431.13

471.56 - 1255.36 = 13.2 
lbm

s  
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11.178E 

  A steam power cycle has a high pressure of 600 lbf/in.2 and a condenser exit 
temperature of 110 F. The turbine efficiency is 85%, and other cycle components 
are ideal. If the boiler superheats to 1400 F, find the cycle thermal efficiency. 

 

State 3:     h
3
 = 1739.51 Btu/lbm,   s

3
 = 1.8497 Btu/lbm R 

State 1:     h
1
 = 78.01 Btu/lbm,  v

1
 = 0.01617 ft3/lbm 

C.V. Pump:    w
P
 = ⌡⌠vdP ≈ v

1
(P

2
 - P

1
) = h

2
 – h

1
 

         =  0.01617(600 – 1.28) 144/778 = 1.79 Btu/lbm   

   h
2
 = h

1
 + w

P
 = 78.01 + 1.79 = 79.8 Btu/lbm      

C.V. Turb.:  w
T
 = h

3
 - h

4
,   s

4
 = s

3
 + s

T,GEN
 

 Ideal: s
4S

 = s
3
 = 1.8497  Btu/lbm R = 0.1473 + x

4S
 1.8101 

   =>   x
4S

 = 0.9405,   h
4S

 = 78.01 + x
4S

 1031.28 = 1047.93 Btu/lbm 

  =>  w
T,S

 = 1739.51 - 1047.93 = 691.58 Btu/lbm  

 Actual:     w
T,AC

 = η × w
T,S

 = 0.85 × 691.58 = 587.8 Btu/lbm 

C.V. Boiler:      q
H

 = h
3
 - h

2
 = 1739.51 – 79.8 = 1659.7 Btu/lbm 

 η = (w
T,AC

 - w
P
)/q

H
 = (587.8 - 1.79)/1659.7 = 0.353 

 

 P

v1

2 3

4s

4ac

 

T

s1

2

3

4s

4ac
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11.179E 

  The steam power cycle in Problem 11.167 has an isentropic efficiency of the 
turbine of 85% and that for the pump it is 80%. Find the cycle efficiency and the 
specific work and heat transfer in the components. 

 States numbered as in fig 11.3 of text. 

 CV Pump: w
P,S

 = v1(P2 - P1) = 0.01625(600 – 2.2)144/778 = 1.8 Btu/lbm 

    ⇒  w
P,AC

 = 1.8/0.8 = 2.245 Btu/lbm 

            h
2
 = h

1
 + w

P,AC
 = 97.97 + 2.245 = 100.2 Btu/lbm 

 CV Turbine:  w
T,S

 = h
3
 - h

4s
 ,    s

4
 = s

3
 = 1.4464 Btu/lbm R 

    s
4
 = s

3
 = 1.4464 = 0.1817 + x

4
 × 1.7292    =>   x

4
 = 0.7314,  

    h
4
 = 97.97 + 0.7314 × 1019.78 = 843.84 Btu/lbm 

       ⇒  w
T,S

 = 1204.06 - 843.84 = 360.22 Btu/lbm 

  w
T,AC

 = h
3
 - h

4AC
 = 360.22 × 0.85 = 306.2  

   ⇒   h
4AC

 = 897.86 Btu/lbm (still two-phase) 

 CV Boiler:     q
H

 = h
3
 - h

2
 = 1204.06 - 100.2 = 1103.9 Btu/lbm 

  q
L
 = h

4AC
 - h

1
 = 897.86 - 97.97 = 799.9 Btu/lbm 

 η
CYCLE

 = (w
T
 - w

P
)/q

H
 = (306.2 - 2.245)/1103.9 = 0.275 

 

 Compared to (360.22-1.8)/1104.3 = 0.325 in the ideal case. 

 

 

Q

WT

3

2 4

1
Condenser

Boiler
Turbine

WP

QB

 

  

T

s

1

2

3

4s 4ac

 
state 2s and 2ac nearly the 
same 
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11.180E 

  Steam leaves a power plant steam generator at 500 lbf/in.2, 650 F, and enters the 

turbine at 490 lbf/in.2, 625 F. The isentropic turbine efficiency is 88%, and the 

turbine exhaust pressure is 1.7 lbf/in.2. Condensate leaves the condenser and 

enters the pump at 110 F, 1.7 lbf/in.2. The isentropic pump efficiency is 80%, and 

the discharge pressure is 520 lbf/in.2. The feedwater enters the steam generator at 

510 lbf/in.2, 100 F. Calculate the thermal efficiency of the cycle and the entropy 
generation of the flow in the line between the steam generator exit and the turbine 
inlet, assuming an ambient temperature of 77 F. 

 
 

ST. 
GEN.

P 

1 

3 

2 

4 

6 
COND. 

TURBINE.

5 

= 0.88ηsT

 

T 

s 

650 F 
625 F 

2 

5s
6 4 3s 3

5

500 psia
490 psia

1.7 psia

1

 
η

ST
 = 0.88,   η

SP
 = 0.80 

h
1
 = 1328.0,   h

2
 = 1314.0 Btu/lbm 

  s
3S

 = s
2
 = 1.5752 = 0.16483 + x

3S
×1.7686     =>     x

3S
 = 0.79745 

  h
3S

 = 88.1 + 0.797 45×1025.4 = 905.8 Btu/lbm 

  w
ST

 = h
2
 - h

3S
 = 1314.0 - 905.8 = 408.2 Btu/lbm 

  w
T
 = η

ST
w

ST
 = 0.88×408.2 = 359.2 Btu/lbm 

  h
3
 = h

2
 - w

T
 = 1314.0 - 359.2 = 954.8 Btu/lbm 

  w
SP

 = 0.016166(520-1.7)
144
778 = 1.55 Btu/lbm 

  w
p
 = w

SP
/η

SP
 = 1.55/0.80 = 1.94 Btu/lbm 

  q
H

 = h
1
 - h

6
 = 1328.0 - 68.1 = 1259.9 Btu/lbm 

  η
TH

 = w
NET

/q
H

 = (359.2 - 1.94)/1259.9 = 0.284 

C.V. Line from 1 to 2:        w = /0,   

 Energy Eq.:    q = h2 - h1 = 1314 - 1328 = -14 Btu/lbm 

 Entropy Eq.:   s1 + sgen + q/T0 = s2    => 

     sgen = s2 - s1 -q/T0 = 1.5752 - 1.586 - (-14/536.7) = 0.0153 Btu/lbm R 
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11.181E 

  A boiler delivers steam at 1500 lbf/in.2, 1000 F to a two-stage turbine as shown in 

Fig. 11.17. After the first stage, 25% of the steam is extracted at 200 lbf/in.2 for a 

process application and returned at 150 lbf/in.2, 190 F to the feedwater line. The 
remainder of the steam continues through the low-pressure turbine stage, which 

exhausts to the condenser at 2.225 lbf/in.2. One pump brings the feedwater to 150 

lbf/in.2 and a second pump brings it to 1500 lbf/in.2. Assume the first and second 
stages in the steam turbine have isentropic efficiencies of 85% and 80% and that 
both pumps are ideal. If the process application requires 5000 Btu/s of power, 
how much power can then be cogenerated by the turbine? 

 
 3: h

3
 = 1490.32,  s

3
 = 1.6001 Btu/lbmR 

C.V. Turbine T1 
4s: Rev and adiabatic    s

4S
 = s

3
   ⇒    

Table F.7.2  Sup. vapor 
       h

4S
 = 1246.6 Btu/lbm 

    w
T1,S

 = h
3
 - h

4S
 = 243.7 Btu/lbm  

    ⇒ w
T1,AC

 = 207.15 Btu/lbm 

   h
4AC

 = h
3
 - w

T1,AC
 = 1283.16 

4ac: P
4
, h

4AC
    

      ⇒   s
4AC

 = 1.6384 Btu/lbm R 

 

T1 T2

3 

4 

5 

7 
6 

1 

2 
P2

Proc. 
5000

B 

C P1

Btu/s 

 

5s:     s
5S

 = s
4AC

     ⇒        x
5S

 = 
1.6384 – 0.1817

1.7292  = 0.8424 

    h
5S

 = 97.97 + x
5S

 1019.78 = 957.03 Btu/lbm 

    w
T2,S

 = h
4AC

 - h
5S

 = 326.13 Btu/lbm 

     w
T2,AC

 = 260.9 = h
4AC

 - h
5AC

          ⇒  h
5AC

 = 1022.3 Btu/lbm  

 7:  Compressed liquid  use sat. liq. same T:     h
7
 = 158.02 Btu/lbm;   

  C.V. process unit. Assume no work only heat out.   

 q
PROC

 = h
4AC

 - h
7
 = 1125.1 Btu/lbm 

   m
.

4
 = Q

.
/q

PROC
 = 5000/1125.1 = 4.444 lbm/s = 0.25 m

.
TOT

   

       ⇒  m
.

TOT
 = m

.
3
 = 17.776 lbm/s,       m

.
5
 = m

.
3
 - m

.
4
 = 13.332 lbm/s 

C.V. Total turbine 

   W
.

T
 = m

.
3
h

3
 - m

.
4
h

4AC
 - m

.
5
h

5AC
 = 7160 Btu/s 
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Brayton Cycles  

 
11.182E 

  A large stationary Brayton cycle gas-turbine power plant delivers a power output 
of 100 000 hp to an electric generator. The minimum temperature in the cycle is 
540 R, and the maximum temperature is 2900 R. The minimum pressure in the 
cycle is 1 atm, and the compressor pressure ratio is 14 to 1. Calculate the power 
output of the turbine, the fraction of the turbine output required to drive the 
compressor and the thermal efficiency of the cycle? 

 
 Brayton:  

w
.

NET
 = 100 000 hp 

P
1
 = 1 atm, T

1
 = 540 R 

P
2
/P

1
 = 14, T

3
 = 2900 R 

Solve using constant C
P0

: 

 
1 

2 

3 

4 
P 

P = 1 atm 

T

s
 

Compression in compressor:     s2 = s1   ⇒     Implemented in Eq.8.32 

    → T
2
 = T

1
(P

2

P
1
)

k-1
k  = 540(14)0.286 = 1148.6 R 

    w
C
 =  h

2
 - h

1
 = C

P0
(T

2
-T

1
)   = 0.24 (1148.6 - 540) = 146.1 Btu/lbm 

Expansion in turbine:       s4 = s3      ⇒     Implemented in Eq.8.32 

      T
4
 = T

3
(P

4

P
3
)

k-1
k  = 2900(

1
14)

0.286
 = 1363.3 R 

    w
T
 = h

3
 - h

4
 = C

P0
(T

3
-T

4
)  = 0.24(2900 - 1363.3) = 368.8 Btu/lbm 

    w
NET

 = w
T
 - w

C
 = 368.8 - 146.1 = 222.7 Btu/lbm 

    m
.

 = W
.

NET
/w

NET
 = 100 000×2544/222.7 = 1 142 344 lbm/h 

    W
.

T
 = m

.
w

T
 = 165 600 hp,    w

C
/w

T
 = 0.396 

Energy input is from the combustor 

    q
H

 = C
P0

(T
3
 - T

2
) = 0.24(2900 - 1148.6) = 420.3 Btu/lbm 

    η
TH

 = w
NET

/q
H

 = 222.7/420.3 = 0.530 
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11.183E 
  A Brayton cycle produces 14 000 Btu/s with an inlet state of 60 F, 14.7 psia, and 

a compression ratio of 16:1. The heat added in the combustion is 400 Btu/lbm. 
What are the highest temperature and the mass flow rate of air, assuming cold air 
properties? 

 Solution: 

 Efficiency is from Eq.11.8 

  η = 
 W

.
net

 Q
.

H

 = 
wnet

qH
 = 1 - r

-(k-1)/k
p

 = 1 - 16
-0.4/1.4

 = 0.547 

 from the required power we can find the needed heat transfer  

    Q
.

H =  W
.

net / η = 
14 000
0.547  = 25 594 Btu/s 

    m
.

 =  Q
.

H / qH = 
25 594 Btu/s
400 Btu/lbm = 63.99 lbm/s 

 

 Temperature after compression is 

   T2 = T1 r
(k-1)/k
p  = 520 × 16

0.4/1.4
 = 1148 R 

 The highest temperature is after combustion 

   T3 = T2 + qH/Cp = 1148 + 
400
0.24 = 2815 R 
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11.184E 

  Do the previous problem with properties from table F.5 instead of cold air 
properties. 

 Solution: 

 With the variable specific heat we must go through the processes one by 
one to get net work and the highest temperature T3. 

From F.5:     h1 = 124.38 btu/lbm,     s
o
T1 = 1.63074 Btu/lbm R 

The compression is reversible and adiabatic so constant s. From Eq.8.28 

  s2 = s1   ⇒    s
o
T2 = s

o
T1 + R ln (

P2

P1
) = 1.63074 + 

53.34
778  ln16  

       = 1.82083 Btu/lbm R 

      back interpolate in F.5    ⇒     T2 = 1133.5 R,   h2 = 274.58 Btu/lbm 

Energy equation with compressor work in 

    wC = -1w2 = h2 - h1 = 274.58 - 124.383 = 150.2 Btu/lbm 

Energy Eq. combustor: h3 = h2 + qH = 274.58 + 400 = 674.6 Btu/lbm 

State 3:  (P, h):     T3 = 2600 R,   s
o
T3 = 2.04523 Btu/lbm R 

The expansion is reversible and adiabatic so constant s. From Eq.8.28 

  s4 = s3  ⇒  s
o
T4 = s

o
T3 + Rln(P4/P3) = 2.04523 + 

53.34
778  ln(1/16) = 1.85514 

      ⇒  T4 = 1297 R,   h4 = 316.21 Btu/lbm 

Energy equation with turbine work out 

    wT = h3 - h4 = 674.6 - 316.21 = 358.4 Btu/lbm 

Now the net work is 

 wnet = wT - wC = 358.4 – 150.2 = 208.2 Btu/lbm 

The total required power requires a mass flow rate as 

         m
.

 = 
W
.

net

wnet
 = 

14 000
208.2  

Btu/s
Btu/lbm = 67.2 lbm/s 
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11.185E 

  An ideal regenerator is incorporated into the ideal air-standard Brayton cycle of 
Problem 11.182. Calculate the cycle thermal efficiency with this modification. 

Solution: 

 

 

1 

2 3 

4 

P

v

s
s

 
1 

2 

3 

4 

P = 1 atm 

T

s

x

y

 

Compression ratio 

       
P2

P1
 = 14 

Max temperature 
    T3 = 2900 R 

 

 

The compression is reversible and adiabatic so  constant s. From Eq.8.32 

    → T
2
 = T

1
(P

2

P
1
)

k-1
k  = 540(14)0.286 = 1148.6 R 

    w
C
 =  h

2
 - h

1
 = C

P0
(T

2
-T

1
)   = 0.24 (1148.6 - 540) = 146.1 Btu/lbm 

Expansion in turbine:       s4 = s3      ⇒     Implemented in Eq.8.32 

      T
4
 = T

3
(P

4

P
3
)

k-1
k  = 2900(

1
14)

0.286
 = 1363.3 R 

    w
T
 = h

3
 - h

4
 = C

P0
(T

3
-T

4
)  = 0.24(2900 - 1363.3) = 368.8 Btu/lbm 

    w
NET

 = w
T
 - w

C
 = 368.8 - 146.1 = 222.7 Btu/lbm 

Ideal regenerator:     T
X

 = T
4
 = 1363.3 R 

   q
H

 = h
3
 - h

X
 = 0.24(2900 - 1363.3) = 368.8 Btu/lbm = wT 

   η
TH

 = w
NET

/q
H

 = 222.7/368.8 = 0.604 
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11.186E 

  An air-standard Ericsson cycle has an ideal regenerator as shown in Fig. P11.62. 
Heat is supplied at 1800 F and heat is rejected at 68 F. Pressure at the beginning 

of the isothermal compression process is 10 lbf/in.2. The heat added is 275 
Btu/lbm. Find the compressor work, the turbine work, and the cycle efficiency. 

 

  Identify the states  
Heat supplied at high temperature T

4
 = T

3
 = 1800 F = 2349.7 R 

Heat rejected at low temperature        T
1
 = T

2
 = 68 F = 527.7 R 

Beginning of the compression: P
1
 = 10 lbf/in2 

Ideal regenerator: 
2
q

3
 = -

4
q

1
      ⇒      q

H
 = 

3
q

4
  ⇒  

      w
T
 = q

H
 = 275 Btu/lbm 

 η
TH

 = η
CARNOT TH.

 = 1 - T
L
/T

H
 = 1 - 527.7/2349.7 = 0.775 

 wnet = η
TH

 q
H

 = 0.775 × 275 = 213.13 Btu/lbm 

 q
L
 = -w

C
 = 275 - 213.13 = 61.88 Btu/lbm 

 
 P 

v 

1 

2 3 

4 

T 
T 

P 

P 

 

1 
2 

3 4 T 

T 

P 
P 

s

T 
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11.187E 

  The turbine in a jet engine receives air at 2200 R, 220 lbf/in.2. It exhausts to a 

nozzle at 35 lbf/in.2, which in turn exhausts to the atmosphere at 14.7 lbf/in.2. 
The isentropic efficiency of the turbine is 85% and the nozzle efficiency is 95%. 
Find the nozzle inlet temperature and the nozzle exit velocity. Assume negligible 
kinetic energy out of the turbine. 

Solution: 

C.V. Turbine:   hi = 560.588 Btu/lbm,   s
o
Ti = 1.99765 Btu/lbm R,   ses = si        

Then from Eq.8.28 

 ⇒  s
o
Tes = s

o
Ti + R ln(Pe/Pi) = 1.99765 + 

53.34
778  ln (35/220) = 1.8716 

Btu
lbm R 

  Table F.5    Tes = 1382 R,   hes = 338.27 Btu/lbm,  

Energy eq.:   w
T,s

 = hi - hes = 560.588 - 338.27 = 222.3 Btu/lbm 

Eq.9.27:    w
T,AC

 = w
T,s

 × η
T
 = 188.96 = h

i
 - h

e,AC
     ⇒  h

e,AC
 = 371.6 

 Table F.5   ⇒   Te,AC = 1509 R,   s
o
Te = 1.8947 Btu/lbm R 

C.V. Nozzle:   hi = 371.6  Btu/lbm,   s
o
Ti = 1.8947 Btu/lbm R,   ses = si         

Then from Eq.8.28 

 ⇒    s
o
Tes = s

o
Ti + R ln(Pe/Pi) = 1.8947 + 

53.34
778  ln (

14.7
35 ) = 1.8352 

Btu
lbm R 

 Table F.5   ⇒   T
e,s

 = 1199.6 R,   h
e,s

 = 291.3 Btu/lbm 

Energy Eq.: (1/2)V
e,s
2  = h

i
 - h

e,s
 = 371.6 - 291.3 = 80.3 Btu/lbm 

Eq.9.30:  (1/2)V
e,AC

2  = (1/2)V
e,s
2  × η

NOZ
 = 76.29 Btu/lbm 

     V
e,AC

 = 2 × 25037 × 76.29 = 1954 ft/s 

 

   Recall  1 Btu/lbm = 25 037 ft2/s2 
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Otto, Diesel, Stirling and Carnot Cycles  

 
11.188E 

  Air flows into a gasoline engine at 14 lbf/in.2, 540 R. The air is then compressed 
with a volumetric compression ratio of 8:1. In the combustion process 560 
Btu/lbm of energy is released as the fuel burns. Find the temperature and pressure 
after combustion. 

Solution: 

Solve the problem with constant heat capacity. 

 Compression 1 to 2:   s2 = s1   ⇒   From Eq.8.33 and Eq.8.34 

    T2 = T1 (v1/v2)
k-1

 = 540 × 8
0.4

 = 1240.6 R 

    P2 = P1×(v1/v2)
k
 = 14 × 8

1.4
 = 257.3 lbf/in2 

 Combustion 2 to 3 at constant volume:   u3 = u2 + qH 

    T3 = T2 + qH/Cv = 1240.6 + 560/0.171 = 4515 R 

    P3 = P2 × (T3/T2) = 257.3 (4515 / 1240.6) = 936 lbf/in2 

 

 P

v1 

2 

3 

4 
s

 

1 

2 

3 

4 
v

T

s
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11.189E 

  To approximate an actual spark-ignition engine consider an air-standard Otto 
cycle that has a heat addition of 800 Btu/lbm of air, a compression ratio of 7, and 
a pressure and temperature at the beginning of the compression process of 13 

lbf/in.2, 50 F. Assuming constant specific heat, with the value from Table F.4, 
determine the maximum pressure and temperature of the cycle, the thermal 
efficiency of the cycle and the mean effective pressure. 

Solution: 

 P

v1 

2 

3 

4 

 

1 

2 

3 

4 

v

T

s
 

 

 

       State 1: v
1
 = RT

1
/P

1
 = 

53.34×510
13×144

 = 14.532 ft3/lbm,  v
2
 = v

1
/7 = 2.076 ft3/lbm 

The compression process, reversible adiabatic so then isentropic. The constant 
s is implemented with Eq.8.25 leading to Eqs.8.34 and 8.32 

    P
2
 = P

1
(v

1
/v

2
)
k
 = 13(7)1.4 = 198.2 lbf/in2 

    T
2
 = T

1
(v

1
/v

2
)
k-1

 = 510(7)0.4 = 1110.7 R 

The combustion process with constant volume, q
H

 = 800 Btu/lbm 

    T
3
 = T

2
 + q

H
/C

V0
 = 1110.7 + 800/0.171 = 5789 R 

    P
3
 = P

2
T

3
/T

2
= 198.2 × 5789/1110.7 = 1033 lbf/in2 

Cycle efficiency from the ideal cycle as in Eq.11.18 

    η
TH

 = 1 - (T
1
/T

2
) = 1 - 510/1110.7 = 0.541 

To get the mean effective pressure we need the net work 

    w
NET

 = η
TH

 × q
H

 = 0.541 × 800 = 432.8 Btu/lbm 

    P
m eff

 = 
w

NET

v
1
-v

2
 = 

432.8×778
(14.532-2.076)×144

 = 188 lbf/in2 
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11.190E 
  A gasoline engine has a volumetric compression ratio of 10 and before 

compression has air at 520 R, 12.2 psia in the cylinder. The combustion peak 
pressure is 900 psia. Assume cold air properties. What is the highest temperature 
in the cycle? Find the temperature at the beginning of the exhaust (heat rejection) 
and the overall cycle efficiency.  

 Solution: 

Compression. Isentropic so we use Eqs.8.33-8.34 

  P2 = P1(v1/v2)
k
 = 12.2 (10)1.4 = 306.45 psia 

  T2 = T1(v1/v2)
k-1

 = 520 (10)0.4 = 1306.2 R 

Combustion. Constant volume 

  T3 = T2 (P3/P2) = 1306.2 × 900/306.45 = 3836 R 

Exhaust. Isentropic expansion so from Eq.8.33 

  T4 = T3 / (v1/v2)
k-1

 = T3 / 100.4 = 3836 / 2.5119 = 1527 R 

  Overall cycle efficiency is from Eq.11.18,  rv = v1/v2 

    η = 1 − r
1-k
v  = 1 − 10

-0.4
 = 0.602 

Comment: No actual gasoline engine has an efficiency that high, maybe 35%. 
 
 



   Sonntag, Borgnakke and van Wylen 

 
11.191E 
  A for stroke gasoline engine has a compression ratio of 10:1 with 4 cylinders of 

total displacement 75 in3. the inlet state is 500 R, 10 psia and the engine is 
running at 2100 RPM with the fuel adding 750 Btu/lbm in the combustion 
process. What is the net work in the cycle and how much power is produced? 

 Solution: 

 Overall cycle efficiency is from Eq.11.18,  rv = v1/v2 

   ηTH = 1 − r
1-k
v  = 1 − 10

-0.4
 = 0.602 

  wnet = ηTH × qH = 0.602 × 750 = 451.5 Btu/lbm 

 We also need specific volume to evaluate Eqs.11.15 to 11.17 

  v1 = RT1 / P1 = 53.34 × 500 / (10 × 144) = 18.52 ft3/lbm 

  Pmeff = 
wnet

v1 – v2
 = 

wnet

v1 (1 – 
1

rv )
  = 

451.5
18.52 × 0.9

 
778
144= 146.3 psia 

 Now we can find the power from Eq.11.17 

  W
.

 = Pmeff Vdispl 
RPM

60  
1
2 = 146.3 × 

75
12 × 

2100
60  × 

1
2 = 16 002 lbf-ft/s 

      = 29 hp 
  Recall  1 hp = 550 lbf-ft/s. 
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11.192E 

  It is found experimentally that the power stroke expansion in an internal 
combustion engine can be approximated with a polytropic process with a value of 
the polytropic exponent n somewhat larger than the specific heat ratio k. Repeat 
Problem 11.189 but assume the expansion process is reversible and polytropic 
(instead of the isentropic expansion in the Otto cycle) with n equal to 1.50. 

 

     First find states 2 and 3. based on the inlet state we get 

  v
4
 = v

1
 = RT

1
/P

1
 = 53.34×510/13×144 = 14.532 ft3/lbm 

  v
3
 = v

2
 = v

1
/7 = 2.076 ft3/lbm 

After compression we have constant s leads to Eq.8.34 and Eq.8.32 

    P
2
 = P

1
(v

1
/v

2
)
k
 = 13(7)1.4 = 198.2 lbf/in2 

    T
2
 = T

1
(v

1
/v

2
)
k-1

 = 510(7)0.4 = 1110.7 R 

 Constant volume combustion 

    T
3
 = T

2
 + q

H
/C

V0
 = 1110.7 + 800/0.171 = 5789 R 

    P
3
 = P

2
T

3
/T

2
= 198.2 × 5789/1110.7 = 1033 lbf/in2 

 Process 3 to 4:    Pv1.5 = constant. 

  P
4
 = P

3
(v

3
/v

4
)1.5 = 1033(1/7)1.5 = 55.78 lbf/in2 

  T4 = T3(v3/v4)0.5 = 5789(1/7)0.5 = 2188 R 

 For the mean effective pressure we need the net work and therefore the 

 induvidual process work terms 

  1w2 = ∫ P dv = R(T2 - T1)/(1 - 1.4) 

         = -53.34(1110.7 - 510)/(0.4×778) = -102.96 Btu/lbm 

  3w4 = ∫ P dv = R(T4 - T3)/(1 - 1.5) 

         = -53.34(2188 - 5789)/(0.5×778) = 493.8 Btu/lbm 

  wNET = 493.8 - 102.96 = 390.84 Btu/lbm 

  ηCYCLE = wNET/qH = 390.84/700 = 0.488 

 Pmeff = w
NET

/(v
1
-v

2
) = 390.84×778/(14.532 - 2.076) = 169.5 lbf/in2 

 Notice a smaller w
NET

, η
CYCLE

, Pmeff compared to ideal cycle. 
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11.193E 

  In the Otto cycle all the heat transfer qH occurs at constant volume. It is more 
realistic to assume that part of qH occurs after the piston has started its 
downwards motion in the expansion stroke. Therefore consider a cycle identical 
to the Otto cycle, except that the first two-thirds of the total qH occurs at constant 
volume and the last one-third occurs at constant pressure. Assume the total qH is 
700 Btu/lbm, that the state at the beginning of the compression process is 13 

lbf/in.2, 68 F, and that the compression ratio is 9. Calculate the maximum 
pressure and temperature and the thermal efficiency of this cycle. Compare the 
results with those of a conventional Otto cycle having the same given variables. 

 
 

1 

2 

3 4 

s 

s 

P 

v 

5 

 

1 

2 

3 
4 T 

s

s 

s 

v 

v 

 

5 

 

P
1
 = 13, T

1
 = 527.67 R 

r
V

 = v
1
/v

2
 = 7 

q
23

 = 
2
3×700 = 466.7 

Btu
lbm 

q
34

 = 
1
3×700 = 233.3 

Btu
lbm 

 

    P
2
 = P

1
(v

1
/v

2
)
k
 = 13(9)1.4 = 281.8 lbf/in2 

    T
2
 = T

1
(v

1
/v

2
)
k-1

 = 527.67(9)0.4 = 1270.7 R 

    T
3
 = T

2
 + q

23
/C

V0
 = 1270.7 + 466.7/0.171 = 4000 R 

    P
3
 = P

2
(T

3
/T

2
) = 281.8 × 4000/1270.7 = 887.1 lbf/in2 = P

4
 

    T
4
 = T

3
 + q

34
/C

P0
 = 4000 + 233.3/0.24 = 4972 R 

    
v

5

v
4
 = 

v
1

v
4
 = (P

4
/P

1
) × (T

1
/T

4
) = 

88.1
13  × 

527.67
4972  = 7.242 

    T
5
 = T

4
(v

4
/v

5
)
k-1

 = 4972(1/7.242)
0.4

 = 2252 R 

    q
L
 = C

V0
(T

5
-T

1
) = 0.171(2252 - 527.67) = 294.9 Btu/lbm 

    η
TH

 = 1 - q
L
/q

H
 = 1 - 294.9/700 = 0.579 

    Standard Otto cycle:        η
TH

 = 1 - (9)-0.4 = 0.585 
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11.194E 

  A diesel engine has a bore of 4 in., a stroke of 4.3 in. and a compression ratio of 
19:1 running at 2000 RPM (revolutions per minute). Each cycle takes two 

revolutions and has a mean effective pressure of 200 lbf/in.2. With a total of 6 
cylinders find the engine power in Btu/s and horsepower, hp. 

Solution: 

Work from mean effective pressure. 

 Pmeff = w
net

 / (v
max

 - v
min

)     ->    w
net

 = Pmeff (vmax
 - v

min
) 

The displacement is 

 ∆V = πBore2 × 0.25 × S = π × 42 × 0.25 × 4.3 = 54.035 in3 

Work per cylinder per power stroke 

 W = Pmeff(Vmax
 - V

min
) = 200 × 54.035 / (12 × 778) = 1.1575 Btu/cycle 

Only every second revolution has a power stroke so we can find the power 

 W
.

 = W × Ncyl × RPM × 0.5 (
cycles
min ) × (

min
60 s) × (

Btu
cycle) 

      = 1.1575 × 6 × 2000 × 0.5 × (1/60) = 115.75 Btu/s 

      = 115.75 × 3600/2544.43 hp = 164  hp 
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11.195E 
  At the beginning of compression in a diesel cycle T = 540 R, P = 30 lbf/in.2  and 

the state after combustion (heat addition) is  2600 R and 1000  lbf/in.2. Find the 
compression ratio, the thermal efficiency and the mean effective pressure. 

Solution: 

Compression process (isentropic)  from Eqs.8.33-8.34 

 P2 = P3 = 1000 lbf/in2   =>  v1/v2 = (P2/P1)1/k = (1000/30)0.7143 = 12.24 

  T2 = T1(P2/P1)(k-1)/k = 540(1000/30) 0.2857 = 1470.6 R 

Expansion process (isentropic)   first get the volume ratios 

  v3/v2 = T3/T2 = 2600/1470.6 = 1.768 

  v
4
/v3 = v1/v3 = (v1/v2)(v2/v3) = 12.24/1.768 = 6.923 

The exhaust temperature follows from Eq.8.33 

  T
4
 = T3(v3/v

4
)k-1 = 2600*6.923-0.4 = 1199 R 

  q
L
 = CV(T

4
 - T

1
) = 0.171(1199-540) = 112.7 Btu/lbm 

  q
H

 = h3 - h2 = CP(T3 - T2) = 0.24(2600 - 1470.6) = 271.1 Btu/lbm 

  η = 1 - q
L
/q

H
 = 1 - 112.7 / 271.1 = 0.5843 

  w
net

 = q
net

 = 271.1 - 112.7 = 158.4 Btu/lbm 

  v
max

 = v1 = RT1/P1 = 53.34 × 540/(30 × 144) = 6.6675 ft3/lbm 

  vmin = v
max

(v1/v2) = 6.6675 / 12.24 = 0.545 ft3/lbm 

  Pmeff = [158.4/(6.6675 - 0.545)] × (778/144) = 139.8 lbf/in2 

 

 P

v1 

2 3 

4 s

s

 

1 

2 

3 

4 

v

T

s

P

 

 

 

 Remark: This is a too low compression ratio for a practical diesel cycle. 
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11.196E 

  Consider an ideal air-standard diesel cycle where the state before the compression 

process is 14 lbf/in.2, 63 F and the compression ratio is 20. Find the maximum 
temperature(by iteration) in the cycle to have a thermal efficiency of 60%. 

Diesel cycle: P
1
= 14,  T

1
 = 522.67 R,  v

1
/v

2
 = 20,  η

TH
 = 0.60 

From the inlet state and the compression we get 

 T
2
 = T

1
(v

1
/v

2
)
k-1

 = 522.67(20)0.4 = 1732.4 R 

 v
1
 = 

53.34×522.67
14×144

 = 13.829 ft3/lbm,      v
2
 = 

13.829
20  = 0.6915 ft3/lbm 

Constant pressure combustion relates  v
3
 and T

3
 

  v
3
 = v

2
×T

3
/T

2
 = 0.6915×T

3
/1732.4 = 0.000399 T

3
 

The expansion then gives T
4
 interms of T

3
 

 
T

3

T
4
 = (v

4

v
3
)k-1

 = ( 13.829
0.000399 T

3
)0.4

 →       T
4
 = 0.0153 T

1.4
3  

Now these T’s relate to the given efficiency 

 η
TH

 = 0.60 = 1 - 
T

4
-T

1

k(T
3
-T

2
) = 1 - 

0.0153 T
1.4
3 -522.67

1.4(T
3
-1732.4)  

        ⇒    0.0153 T
1.4
3  - 0.56 T

3
 + 447.5 = 0 

Trial and error on this non-linear equation 

 5100 R: LHS = -35.54,      5500 R: LHS = 5.04,      5450 R: LHS = -0.5 

                Linear interpolation, T
3
 = 5455 R 
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11.197E 
  Consider an ideal Stirling-cycle engine in which the pressure and temperature at 

the beginning of the isothermal compression process are 14.7 lbf/in.2, 80 F, the 
compression ratio is 6, and the maximum temperature in the cycle is 2000 F. 
Calculate the maximum pressure in the cycle and the thermal efficiency of the 
cycle with and without regenerators. 

 
 

T 

T 
v 

v 

1 

2 

3 

4 

P 

v  

1 
2 

3 4 T 

T 

v 
v 

s

T 

  

Ideal Stirling cycle 
T

1
 = T

2
 = 80 F 

P
1
 = 14.7 lbf/in2 

v
1

v
2
 = 6 

T
3
 = T

4
 = 2000 F 

     T
1
 = T

2
 → P

2
 = P

1
× v

1
/v

2
 = 14.7×6 = 88.2 

    V
2
 = V

3
 → P

3
 = P

2
× T

3
/T

2
 = 88.2×

2460
540  = 401.8 lbf/in2 

    w
34

 = q
34

 = RT
3
 ln (v

4
/v

3
) 

            = (53.34/778) × 2460 ln 6 = 302.2 Btu/lbm 

    q
23

 = C
V0

(T
3
-T

2
) = 0.171(2460-540) = 328.3 Btu/lbm 

    w
12

 = q
12

 = -RT
1
 ln 

v
1

v
2
 = -

53.34
778 ×540 ln 6 = -66.3 Btu/lbm 

    w
NET

 = 302.2 - 66.3 = 235.9 Btu/lbm 

    η
NO REGEN

 = 
235.9

302.2+328.3 = 0.374, 

    η
WITH REGEN

 = 
235.9
302.2 = 0.781 
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11.198E 
  An ideal air-standard Stirling cycle uses helium as working fluid. The isothermal 

compression brings the helium from 15 lbf/in.2, 70 F to 90 lbf/in.2. The 
exspansion takes place at 2100 R and there is no regenerator. Find the work and 
heat transfer in all four processes per lbm helium and the cycle efficiency. 

 

Substance helium  F.4:       R = 386 ft-lbf/lbmR, Cv = 0.753 Btu/lbm R 

  v
4
/v3 = v1/v2 = P2/P1 = 90/15 = 6 

1 -> 2: -1w2 = -1q2 = ∫ P dV = RT ln (v1/v2) 

                          = 386 × 530 × ln(6)/778 = 471.15 Btu/lbm 

2 -> 3: 2w3 = 0;   2q3 = CP(T3 - T2) = 0.753(2100 - 530) = 1182.2 

3 -> 4: 3w4 = 3q4 = RT3 ln(v
4
/v3) = 386 × 2100 × ln(6)/778  

         = 1866.8 Btu/lbm 

4 -> 1: 4w1 = 0;     4q1 = CP(T4 - T1) = -1182.2 Btu/lbm 

 η
Cycle

 = wnet/ qH = 
-471.15 + 1866.0
1182.2 + 1866.8  = 0.458 
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11.199E 
  The air-standard Carnot cycle was not shown in the text; show the T–s diagram 

for this cycle. In an air-standard Carnot cycle the low temperature is 500 R and 
the efficiency is 60%. If the pressure before compression and after heat rejection 

is 14.7 lbf/in.2, find the high temperature and the pressure just before heat 
addition. 

 

Solution: 

Carnot cycle efficiency from Eq.7.5 

  η = 0.6 = 1 - TH/TL 

     ⇒  TH = TL/0.4 = 500/0.4 = 1250 R 

Just before heat addition is state 2 and after heat rejection is state 1 so  P1 = 
100 kPa and the isentropic compression is from Eq.8.32 

  P2 = P1(TH/TL)
1

k-1 = 14.7(
1250
500 )3.5 = 363.2 lbf/in2 

  

OR if we do not use constant specific heat, but use Table F.5 in Eq.8.28 

 P
2
 = P

1
 exp[(s

o
T2 - s

o
T1)/R] = 14.7 × exp[

1.84573 – 1.62115
53.34 / 778  ]  = 389 lbf/in2 

 

 P

v
1 

2 
3 

4 

s s

T

T

 

1 4 

T

s

2 3 
T

T

H

L
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11.200E 

  Air in a piston/cylinder goes through a Carnot cycle in which T
L
 = 80.3 F and the 

total cycle efficiency is η = 2/3. Find T
H

, the specific work and volume ratio in 

the adiabatic expansion for constant Cp, Cv. 

Carnot cycle: 

  η = 1 - T
L
/T

H
 = 2/3  ⇒    T

H
 = 3 × T

L
 = 3 × 540 = 1620 R 

 Adiabatic expansion 3 to 4:    Pvk = constant 

 
3
w

4
 = (P

4
v

4
 - P

3
v

3
)/(1 - k) = [R/(1-k)](T

4
 - T

3
) = u

3
 - u

4
  

     = C
v
(T

3
 - T

4
) = 0.171(1620 - 540) = 184.68 Btu/lbm 

 v
4
/v

3
 = (T

3
/T

4
)1/(k - 1) = 32.5 = 15.6 

  

 P

v
1 

2 
3 

4 

s s

T

T

 

1 4 

T

s

2 3 
T

T

H

L

 

 

 



   Sonntag, Borgnakke and van Wylen 

 
11.201E 

  Do the previous problem 11.200E using Table F.5.  

  Air in a piston/cylinder goes through a Carnot cycle in which T
L
 = 80.3 F and the 

total cycle efficiency is η = 2/3. Find T
H

, the specific work and volume ratio in 

the adiabatic expansion for constant Cp, Cv. 

 

Carnot cycle: 

  η = 1 - T
L
/T

H
 = 2/3  ⇒    T

H
 = 3 × T

L
 = 3 × 540 = 1620 R 

 
3
w

4
 = u

3
 - u

4
 = 290.13 - 92.16 = 197.97 Btu/lbm 

Adiabatic expansion 3 to 4:      s
4
 = s

3
   ⇒     Eq.8.28 

 s
o
T4 = s

o
T3 + R ln 

P4

P3
  ⇒ Table F.5 for standard entropy 

 
P4

P3
 = exp[(s

o
T4 - s

o
T3)/R] = exp[1.63979-1.91362

53.34/778  ] = 0.018426 

Ideal gas law then gives 

  
v4

v3
 = 

T4

T3
 × 

P3

P4
 = 

540
1620 × 

1
0.018426  = 18.09 

 

 P

v
1 

2 
3 

4 

s s

T

T

 

1 4 

T

s

2 3 
T

T

H

L
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Refrigeration Cycles  

 
11.202E 

  A car air-conditioner (refrigerator) in 70 F ambient uses R-134a and I want to 
have cold air at 20 F produced. What is the minimum high P and the maximum 
low P it can use? 

 
   Since the R-134a must give heat transfer out to the ambient at 70 F, it 

must at least be that hot at state 3. 
 
   From Table F.10.1: P3 = P2 = Psat = 85.95 psia  is minimum high P. 

   Since the R-134a must absorb heat transfer at the cold air 20 F, it must at 
least be that cold at state 4. 

 
   From Table F.10.1: P1 = P4 = Psat = 33.29 psia  is maximum low P. 

 
  

Ideal Ref. Cycle 
T

cond
 =  70 F = T

3
 

T
evap

 =  20 F 

 
Use Table F.10 for R-134a 
 

1 

2 

T 

3 

4 

s  
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11.203E 

  Consider an ideal refrigeration cycle that has a condenser temperature of 110 F 
and an evaporator temperature of 5 F. Determine the coefficient of performance 
of this refrigerator for the working fluids R-12 and R-22. 

 
  

Ideal Ref. Cycle 
T

cond
 =  110 F = T

3
 

T
evap

 =  5 F 

 
Use Table F.9 for R-22 
Use computer table for R-12 

1 

2 

T 

3 

4 

s  
    R-12   R-22  
 h

1
, Btu/lbm 77.803 104.954  

 s
2
 = s

1
  0.16843 0.22705  

 P
2
, lbf/in2 151.11 241.04  

 T
2
, F 127.29 161.87  

 h
2
, Btu/lbm 91.107 123.904  

 h
3
=h

4
, Btu/lbm  33.531 42.446  

 -w
C
 = h

2
-h

1
  13.3 18.95  

 q
L
 = h

1
-h

4
 44.27 62.51  

 β =q
L
/(-w

C
)    3.33 3.30  
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11.204E 

  The environmentally safe refrigerant R-134a is one of the replacements for R-12 
in refrigeration systems. Repeat Problem 11.203 using R-134a and compare the 
result with that for R-12. 

 
  

Ideal refrigeration cycle 
T

cond
 =  110 F = T

3
 

T
evap

 =  5 F 

 
Use Table F.10 for R-134a 
or computer table 

       

T

s
1

2

3

4

 
 

C.V. Compressor:   Adiabatic and reversible   so constant s 

 State 1:    Table F.10.1        h1 =167.32 Btu/lbm,    s1 = 0.4145 Btu/lbm R 

 State 2:    s2 = s1 and P2 = 161.1 psia = P3 = Psat 110 F 

 Interpolate   =>   h2 = 184.36 Btu/lbm  and   T2 = 121.8 F 

 Energy eq.:     wC = h2 - h1 = 184.36 - 167.32 = 17.04 Btu/lbm 

Expansion valve:    h3 = h4 = 112.46 Btu/lbm 

Evaporator:     qL = h1 - h4 = 167.32 - 112.46 = 54.86 Btu/lbm 

Overall performance, COP 

  β = qL/wC = 54.86 / 17.04 = 3.22 
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11.205E 

  Consider an ideal heat pump that has a condenser temperature of 120 F and an 
evaporator temperature of 30 F. Determine the coefficient of performance of this 
heat pump for the working fluids R-12, R-22, and ammonia. 

  
Ideal Heat Pump 
T

cond
 = 120 F 

T
evap

 =  30 F 

Use Table F.8 for NH3 
Use Table F.9 for R-22 
Use computer table for R-12 

1 

2 
T 

3 

4 

s  
    R-12   R-22   NH3 
 h

1
, Btu/lbm   80.42  107.28  619.58 

 s
2
 = s

1
 0.1665 0.2218 1.2769 

 P
2
, lbf/in2 172.3 274.6 286.5 

 T
2
, F 132.2 160.4 239.4 

 h
2
, Btu/lbm  91.0  122.17 719.5 

 h
3
=h

4
, Btu/lbm    36.011   45.71  178.83 

 -w
C
 = h

2
-h

1
   10.58   14.89   99.92 

 q
H

 = h
2
-h

3
    54.995   76.46  540.67 

 β′ =q
H

/(-w
C
)     5.198     5.135     5.411 
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11.206E 

   The refrigerant R-22 is used as the working fluid in a conventional heat pump 
cycle. Saturated vapor enters the compressor of this unit at 50 F; its exit 
temperature from the compressor is measured and found to be 185 F. If the  
compressor exit is 300 psia, what is the isentropic efficiency of the compressor 
and the coefficient of performance of the heat pump? 

 
  

R-22 heat pump:  T
2
 = 185 F 

                             T
EVAP

 = 50 F 

 
State 1:  Table F.9.1 
     h

1
 = 108.95 Btu/lbm,   

     s
1
 = 0.2180 Btu/lbm R 

1 

2 
T 

3 

4 

s 

2S

 
 
  State 2:     h

2
 = 126.525 Btu/lbm 

  Compressor work:        w
C
 = h

2
 – h

1
 = 126.525 – 108.95 = 17.575 Btu/lbm 

 Isentropic compressor:      s
2S

 = s
1
 = 0.2180 Btu/lbm R 

     State 2s:  (P
2
, s)    T

2S
 = 160 F,     h

2S
 = 120.82 Btu/lbm  

  Ideal compressor work:      w
C s

 = h
2S

 - h
1
 = 120.82 – 108.95 = 11.87 Btu/lbm 

 

      The efficiency is the ratio of the two work terms 

   η
S COMP

= 
w

C s

w
C

 = 
11.87
17.575 = 0.675 

 The condenser has heat transfer as (h
3
 = h

f
 at 300 psia) 

        q
H

 = h
2
 - h

3
 = 126.525 - 48.02 = 78.505 Btu/lbm 

 and a coefficient of performance of 

    β′ = q
H

/w
C
 = 4.47 
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11.207E 
  Consider an air standard refrigeration cycle that has a heat exchanger included as 

shown in Fig. P11.137. The low pressure is 14.7 psia and the high pressure is 200 
psia. The temperature into the compressor is 60 F which is T

1
 and T

3
 in 

Fig.11.38, and T
4
 = T

6
 = -60 F. Determine the coefficienct of performance of this 

cycle. 
 

Solution: 
 

EXP COMP  

q H 

q L 

5 

4 

6 

3 2 
1 

 

2 

s 

T 

1 
3 

4 

5 

6 

 
Standard air refrigeration cycle with 

 T1 = T3 = 60 F = 519.67 R,   P1 = 14.7 psia,   P2 = 200 psia 

 T4 = T6 = -60 F = 399.67 R 

We will solve the problem with cold air properties. 

Compressor, isentropic   s2 = s1     so from Eq.8.32 

 ⇒  T2 = T1(P2/P1)
k-1
k  = 519.67 (200/14.7)0.2857 = 1095.5 R 

 wC = -w12 = CP0(T2 - T1) = 0.24 (1095.5 - 519.67) = 138.2 Btu/lbm 

Expansion in expander (turbine) 

 s5 = s4 ⇒  T5 = T4 (P5/P4)
k-1
k  = 399.67 (14.7/200)

0.2857
 = 189.58 R 

 wE = CP0(T4 - T5) = 0.24 (399.67 - 189.58) = 50.42 Btu/lbm 

Net cycle work 

 wNET = 50.42 - 138.2 = -87.78 kJ/kg 

 qL = CP0(T6 - T5) = wE = 50.42 Btu/lbm 

Overall cycle performance, COP 

 β = qL/(-wNET) = 50.42 / 87.78 = 0.574 
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Availability and Combined Cycles 
 
11.208E 
  Find the flows and fluxes of exergy in the condenser of Problem 11.172E. Use 

those to determine the 2nd law efficiency. 

  A smaller power plant produces 50 lbm/s  steam at 400 psia, 1100 F, in the boiler. 
It cools the condenser with ocean water coming in at 55 F and returned at 60 F so 
that the condenser exit is at 110 F. Find the net power output and the required 
mass flow rate of the ocean water. 

 Solution: 

  Take the reference state at the ocean temperature 55 F = 514.7 R 

 

The states properties from Tables F.7.1 

and F.7.2. Ref. state 14.7 lbf/in2, 55 F,    
       h

0
 = 23.06 Btu/lbm,     

       s
0
 = 0.0458 Btu/lbm R 

 

56

41

cb
 

State 1: 110 F,  x = 0:  h1 = 78.01 Btu/lbm,  s1 = 0.1473 Btu/lbm R,   

State 3: 400 psia, 1100 F:     h3 = 1577.44 Btu/lbm,    s3 = 1.7989 Btu/lbm R  

C.V. Turbine : wT =  h3 - h4  ;  s4 =  s3   

  s4 = s3 = 1.7989 = 0.1473 + x4 (1.8101)     =>       x4 = 0.9124 

  =>  h4 = 78.01 + 0.9124 (1031.28) = 1018.95 Btu/lbm 

C.V. Condenser : qL = h4 - h1 = 1018.95 - 78.01 = 940.94 Btu/lbm 

  Q
.

L = m
.

qL = 50 × 940.94 = 47 047 Btu/s = m
.

ocean Cp ∆T 

   m
.

ocean = Q
.

L / Cp ∆T = 47 047 / (1.0 ×•5) = 9409 lbm/s 

The specific flow exergy for the two states are  from Eq.10.24 neglecting 
kinetic and potential energy 

 ψ4 = h4 - h
0
 - T

0
(s4 - s

0
),     ψ1 = h1 - h

0
 - T

0
(s1 - s

0
) 

 
The net drop in exergy of the water is 

  Φ
.

water = m
.

water [h4
 – h

1
 – To(s

4
 – s

1
)]  

   = 50 [ 1018.95 – 78.01 – 514.7 (1.7989 – 0.1473)]  

   = 47 047 – 42 504 = 4543 Btu/s 
 
The net gain in exergy of the ocean water is 
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  Φ
.

ocean = m
.

ocean[h
6
 – h

5
 – To(s

6
 – s

5
)]  

= m
.

ocean[Cp(T
6
 – T

5
) – ToCp ln(

T6

T5
) ] 

= 9409 [ 1.0 (60 – 55) – 514.7 × 1.0 ln 
459.7 + 60
459.7 + 55 ]  

= 47 047 – 46 818 = 229 Btu/s 
The second law efficiency is 

   η
II
 = Φ

.
ocean / Φ

.
water = 

229
4543 = 0.05 

  
In reality all the exergy in the ocean water is destroyed as the 60 F water mixes 
with the ocean water at 55 F after it flows back out into the ocean and the 
efficiency does not have any significance. Notice the small rate of exergy relative 
to the large rates of energy being transferred.  
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11.209E 

  (Adv.)  Find the availability of the water at all four states in the Rankine cycle 
described in Problem 11.173. Assume the high-temperature source is 900 F and 
the low-temperature reservoir is at 65 F. Determine the flow of availability in or 
out of the reservoirs per pound-mass of steam flowing in the cycle. What is the 
overall cycle second law efficiency? 

Ref. state 14.7 lbf/in2, 77°F,   h
0
 = 45.08 Btu/lbm,    s

0
 = 0.08774 Btu/lbm R 

For this cycle from Table F.7 

State 3: Superheated vapor     h
3
 = 1350.62 Btu/lbm,  s

3
 = 1.5871 Btu/lbm R,   

State 1: Saturated liquid         h
1
 = 97.97 Btu/lbm,  v

1
 = 0.01625 ft3/lbm 

C.V. Pump:   Adiabatic and reversible. Use incompressible fluid so  

 w
P
 = ⌡⌠v dP = v

1
(P

2
 - P

1
) = 0.01625(600 – 2.2)

144
778 = 1.8 Btu/lbm 

    h
2
 = h

1
 + w

P
 = 95.81 Btu/lbm 

C.V. Boiler:         q
H

 = h
3
 - h

2
 = 1350.62 - 97.97 = 1252.65 Btu/lbm 

C.V. Tubine:        w
T
 = h

3
 - h

4
,         s

4
 = s

3
 

        s
4
 = s

3
 = 1.5871 Btu/lbm R = 0.1817 +  x

4
 1.7292   ⇒   x

4
 = 0.8127,   

          h
4
 = 97.97 + 0.8127 × 1019.78 = 926.75 Btu/lbm 

    w
T
 = 1350.62 - 926.75 = 423.87 Btu/lbm 

    η
CYCLE

 = (w
T
 - w

P
)/q

H
 = (423.87 - 1.8)/1252.65 = 0.337 

C.V. Condenser:  

    q
L
 = h

4
 - h

1
 = 926.75 - 97.97 = 828.8 Btu/lbm 

 

 P

v1

2 3

4
 

T

s
1

2

3

4

 
  

From solution to 11.121: 

 s
1
 = 0.17497,    s

2
 = 0.175 = s

1
,    s

4
 = s

3
 = 1.5871 Btu/lbm R 

 h
1
 = 94.01,    h

2
 = 95.81,    h

3
 = 1350.6,    h

4
 = 921.23 Btu/lbm 
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 ψ = h - h
0
 - T

0
(s - s

0
) 

 ψ
1
 = 94.01 - 45.08 - 536.67(0.17497 - 0.08774) = 2.116 Btu/lbm 

 ψ
2
 = 3.92,   ψ

3
 = 500.86,   ψ

4
 = 71.49 Btu/lbm 

 ∆ψ
H

 = (1 - T
0
/T

H
)q

H
 = 0.6054 × 1254.79 = 759.65 Btu/lbm 

 ∆ψ
L
 = (1 - T

0
/T

0
)q

C
 = 0/  

 η
II
 = w

NET
/∆ψ

H
 = (429.37 - 1.8)/759.65 = 0.563 

Notice T
H

 > T
3
,  T

L
 < T

4
 = T

1
, so cycle is externally irreversible.  Both q

H
 and 

q
C
 over finite ∆T. 
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11.210E 
  Find the flows of exergy into and out of the feedwater heater in Problem 11.176E. 
 

  State 1:   x1 = 0,  h1 = 97.97 Btu/lbm, v1 = 0.01625 ft3/lbm, s = 0.17497  

  State 3:   x3 = 0,  h3 = 330.67 Btu/lbm, s3 = 0.49199 Btu/lbm R 

  State 5:   h5 = 1350.52 Btu/lbm,  s5 = 1.5871 Btu/lbm R 

  State 6:   s6 = s5 = 1.5871 Btu/lbm R    =>     h6 = 1208.93 Btu/lbm 

C.V Pump P1 

 wP1 = h2 - h1 = v1(P2 - P1) = 0.01625(150 – 2.225)
144
778 = 0.44 Btu/lbm 

  =>  h2 = h1 + wP1 = 97.97 + 0.4439 = 98.41 Btu/lbm 

  s2 = s1 = 0.17497 Btu/lbm R 

C.V. Feedwater heater: Call    m
.

6 / m
.

tot = x   (the extraction fraction) 

 Energy Eq.: (1 - x) h2 + x h6 = 1 h3  

 

x = 
h3 - h2

h6 - h2
 =  

330.67 - 98.41
1208.93 - 98.41  = 0.2091 

 
2

6

3

x

1-x

FWH

 
Ref. State:  14.7 psia, 77 F,  so = 0.08774 Btu/lbm R,  ho = 45.08 Btu/lbm 

 ψ
2
 = h

2
 - ho - To(s

2
 - so) 

       = 98.41 - 45.08 – 536.67(0.17497 - 0.08774) = 6.52 Btu/lbm 

 ψ
6
 = 1208.93 - 45.08 - 536.67(1.5871 - 0.08774) = 359.2 Btu/lbm 

 ψ
3
 = 330.67 - 45.08 - 536.67(0.49199 - 0.08774) = 68.64 Btu/lbm 

The rate of exergy flow scaled with maximum flow rate is then 

 Φ
.

2
/m

.
3
 = (1 - x) ψ

2
 = 0.7909 × 6.52 = 5.157 Btu/lbm  

  Φ
.

6
/m

.
3
 = xψ

6
 = 0.2091 × 359.2 = 75.109 Btu/lbm 

Φ
.

3
/m

.
3
 = ψ

3
 = 68.64 Btu/lbm 

       The mixing is destroying 5.157 + 75.109 – 68.64 = 11.6 Btu/lbm of exergy 
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11.211E 
  Consider the Brayton cycle in problem 11.183E. Find all the flows and fluxes of 

exergy and find the overall cycle second-law efficiency. Assume the heat 
transfers are internally reversible processes and we then neglect any external 
irreversibility. 

Solution: 

Efficiency is from Eq.11.8 

   η = W
.

NET
/ Q

.
H

   = 
wnet

qH
 = 1 - r

-(k-1)/k
p

 = 1 - 16
-0.4/1.4

 = 0.547 

from the required power we can find the needed heat transfer  

  Q
.

H =  W
.

net / η = 14 000 / 0.547 = 25 594 Btu/s 

   m
.

 =  Q
.

H / qH = 25 594 (Btu/s) / 400 Btu/lbm = 63.99 lbm/s 

Temperature after compression is 

   T2 = T1 r
(k-1)/k
p  = 519.67 × 16

0.4/1.4
 = 1148 R 

The highest temperature is after combustion 

   T3 = T2 + qH/Cp = 1148 + 
400
0.24 = 2815 R 

 For the exit flow I need the exhaust temperature 

T
4
 = T

3
   rp

−(k-1)/k
   = 2815 × 16−0.2857   = 1274.8 R 

 The high T exergy input from combustion is 

 Φ
.

H
 = m

.
(ψ

3
 - ψ

2
) = m

.
[h

3
 – h

2
 – T(s

3
 – s

2
)]  

       = 63.99 [400 – 536.67 × 0.24 ln (
2815
1148)] = 17 895 Btu/s 

 Since the low T exergy flow out is lost the second law efficiency is 

η
II
 = W

.
NET

/Φ
.

H
   = 14 000 / 17 895 = 0.782 

Φ
.

flow out
 = m

.
(ψ

4
 - ψ

o
) = m

.
[h

4
 – h

o
 – T(s

4
 – s

o
)] 

 = 63.99 [ 0.24(1274.8 – 536.7) – 536.7 ×0.24 ln (
1274.8
536.7  ) ] = 4205 Btu/s 

Φ
.

flow in
 = m

.
(ψ

1
 - ψ

o
) = m

.
[h

1
 – h

o
 – T(s

1
 – s

o
)]  

 = 63.99 [ 0.24(60 – 77) – 536.7 × 0.24 ln ( 
519.7
536.7 ) ] = 4.2 Btu/s 
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11.212E 
  Consider an ideal dual-loop heat-powered refrigeration cycle using R-12 as the 

working fluid, as shown in Fig. P11.144. Saturated vapor at 220 F leaves the 
boiler and expands in the turbine to the condenser pressure. Saturated vapor at 0 F 
leaves the evaporator and is compressed to the condenser pressure. The ratio of 
the flows through the two loops is such that the turbine produces just enough 
power to drive the compressor. The two exiting streams mix together and enter 
the condenser. Saturated liquid leaving the condenser at 110 F is then separated 
into two streams in the necessary proportions. Determine the ratio of mass flow 
rate through the power loop to that through the refrigeration loop. Find also the 
performance of the cycle, in terms of the ratio QL/QH. 

 
 

BOIL. 
COND. 

E 
V 
A 
P 
. 

TURB. COMP. 

1 

2 7 6 

3 
4 

5 
P 

Q 
. 
L

 

T 

3 

4 

s 

6 

7 

2 

1 

5 

 

 
   T    P    h    s Computer tables for 
   F lbf/in2 Btu/lbm Btu/lbm R properties. 

 1  0 23.849 77.271  168.88  P
2
=P

3
=P

SAT
 at 110 F 

 2  - 151.11   168.88  P
5
=P

6
=P

SAT
 at 220 F 

 3 110 151.11 33.531 0.067 45  s
2
=s

1
=0.168 88 

 4  0 23.849 33.531   h
2
=91.277 

 5  - 524.43  0.067 45  Pump work: 
 6 220 524.43 89.036 0.151 49  -w

P
 = h

5
-h

3
 

 7 110 151.11  0.151 49         ≈ v
5
(P

5
-P

3
) 

 

 -w
P
 = 0.0129(524.4 - 151.1)

144
778 = 0.894 

 h
5
 = 33.531 + 0.894 = 34.425 Btu/lbm 

 (1-x
7
) = 

0.162 79 - 0.151 49
0.095 34  = 

0.011 30
0.095 34 = 0.1187 

 h
7
 = 87.844 - 0.1187(54.313) = 81.397 Btu/lbm 
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 CV: turbine + compressor 

    Continuity Eq.:     m
.

1
 = m

.
2
,      m

.
6
 = m

.
7
 

    Energy Eq.:        m
.

1
h

1
 + m

.
6
h

6
 = m

.
2
h

2
 + m

.
7
h

7
 

    m
.

1
/m

.
6
 = 

89.036-81.397
91.277-77.271 = 

7.639
14.006 = 0.545,       m

.
6
/m

.
1
 = 1.833 

 CV: pump:     -w
P
 = v

3
(P

5
-P

3
),     h

5
 = h

3
 - w

P
 

 CV evaporator:   Q
.

L
 = m

.
1
(h

1
-h

4
),         CV boiler:   Q

.
H

 = m
.

6
(h

6
-h

5
) 

    ⇒ β = Q
.

L
/Q

.
H

 = 
m
.

1
(h

1
-h

4
)

m
.

6
(h

6
-h

5
)
 = 

77.271-33.531
1.833(89.036-34.425) = 0.436 
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11.213E 
 Consider an ideal combined reheat and regenerative cycle in which steam enters 

the high-pressure turbine at 500 lbf/in.2, 700 F, and is extracted to an open 

feedwater heater at 120 lbf/in.2 with exit as saturated liquid. The remainder of the 

steam is reheated to 700 F at this pressure, 120 lbf/in.2, and is fed to the low-

pressure turbine. The condenser pressure is 2 lbf/in.2. Calculate the thermal 
efficiency of the cycle and the net work per pound-mass of steam. 

 
 5:   h5 = 1356.66,    s5 = 1.6112  

7:   h7 = 1378.17,    s7 = 1.7825 

3:   h3 = hf = 312.59, v3 = 0.01788 

C.V.  T1 

  s5 = s6     => h6 = 1209.76 

wT1 = h5 - h6 = 1356.66 - 1209.76  

       = 146.9 Btu/lbm 

C.V. Pump 1 

-wP1 = h2 - h1 = v1(P2 - P1) 
        = 0.01623(120 - 2) = 0.354 

P P 
1 

2 
4 

5 

6 

7 

8 

COND. HTR 

3 

T1 T2

x

1-x

1-x

 

  =>   h2 = h1 - wP1 = 93.73 + 0.354 = 94.08 Btu/lbm 

C.V. FWH 

   x h6 + (1 - x) h2 = h3  

   x = 
 h3 - h2

 h6 - h2
 = 

312.59 - 94.08
1209.76 - 94.08 = 0.1958 

C.V. Pump 2 

 

s 
1 

2 3 

5 

6 

7 

8 

700 F 

4 
2 psi

T

 
 -wP2 = h4 - h3 = v3(P4 - P3) = 0.01788(500 - 120)(144/778) = 1.26 Btu/lbm 

  =>   h4 = h3 - wP2 = 312.59 + 1.26 = 313.85 Btu/lbm 

 qH = h5 - h4 + (1 - x)(h7 - h6 )  = 1042.81 + 135.43 = 1178.2 Btu/lbm 

C.V. Turbine 2 

  s7 = s8    => x8 = (1.7825 - 0.1744)/1.746 = 0.921 

  h8 = hf + x8 hfg = 93.73 + 0.921 × 1022.2 = 1035.2 

  wT2 = h7 - h8 = 1378.17 - 1035.2 = 342.97 

  wnet = wT1 + (1 - x) wT2 + (1 - x) wP1 + wP2 

         = 146.9 + 275.8 - 0.285 - 1.26 = 421.15 kJ/kg 

  ηcycle = wnet / qH = 421.15 / 1178.2 = 0.357 
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11.214E 
  In one type of nuclear power plant, heat is transferred in the nuclear reactor to 

liquid sodium. The liquid sodium is then pumped through a heat exchanger where 

heat is transferred to boiling water. Saturated vapor steam at 700 lbf/in.2 exits this 
heat exchanger and is then superheated to 1100 F in an external gas-fired 
superheater. The steam enters the turbine, which has one (open-type) feedwater 

extraction at 60 lbf/in.2. The isentropic turbine efficiency is 87%, and the 

condenser pressure is 1 lbf/in.2. Determine the heat transfer in the reactor and in 
the superheater to produce a net power output of 1000 Btu/s. 

 

P 
1 

TURBINE.

COND. 

HTR.

P 
4 2 

3 

5 

6 

SUP.  
HT. 

REACT.

Q 
7 

8 

 

T 

s 

1 
2 3 

1100 F

4 5 

6 

7 

8 

7s

8s

700 lbf/in  2 

60 lbf/in 2 

1 lbf/in 2 

 

 W
.

NET
 = 1000 Btu/s,   η

ST
 = 0.87 

 -wP12 = 0.016136(60 - 1)144/778 = 0.18 Btu/lbm 

 h2 = h1 - wP12 = 69.73 + 0.18 = 69.91 Btu/lbm 

 -wP34 = 0.017378(700 - 60)144/778 = 2.06 Btu/lbm 

 h4 = h3 - wP34 = 262.24 + 2.06 = 264.3 Btu/lbm 

 s
7S

=s
6
 = 1.7682,  P

7
     =>  T

7S
 = 500.8 F,    h

7S
 = 1283.4 

 h
7
 = h

6
 - η

ST
(h

6
 - h

7S
) = 1625.8 - 0.87(1625.8 - 1283.4) = 1327.9 

 s
8S

 = s
6
 = 1.7682 = 0.13264 + x

8S
 × 1.8453  =>    x

8S
 = 0.8863 

 h
8S

 = 69.73 + 0.8863 × 1036 = 987.9 Btu/lbm 

 h
8
 = h

6
 - η

ST
(h

6
 - h

8S
) = 1625.8 - 0.87(1625.8 - 987.9) = 1070.8 

CV: heater:   cont:  m
2
 + m

7
 = m

3
 = 1.0 lbm, 1st law: m

2
h

2
 + m

7
h

7
 = m

3
h

3
 

   m
7
 = (262.24-69.91) / (1327.9-69.91) = 0.1529 

CV: turbine:  w
T
 = (h

6
 - h

7
) + (1 - m

7
)(h

7
 - h

8
) 

          = 1625.8-1327.9 + 0.8471(1327.9-1070.8) = 515.7 Btu/lbm 

CV pumps:   w
P
 = m

1
w

P12
 + m

3
w

P34
 = -(0.8471×0.18 + 1×2.06) = -2.2 Btu/lbm 

    w
NET

 = 515.7 - 2.2 = 513.5 Btu/lbm    =>    m
.

 = 1000/513.5 = 1.947 lbm/s 
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CV: reactor      Q
.

REACT
 = m

.
(h

5
-h

4
) = 1.947(1202 - 264.3) = 1825.7 Btu/s 

CV: superheater    Q
.

SUP
 = m

.
(h

6
 - h

5
) = 1.947(1625.8 - 1202) = 825 Btu/s 
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11.215E 

  Consider an ideal gas-turbine cycle with two stages of compression and two 
stages of expansion. The pressure ratio across each compressor stage and each 
turbine stage is 8 to 1. The pressure at the entrance to the first compressor is 14 

lbf/in.2, the temperature entering each compressor is 70 F, and the temperature 
entering each turbine is 2000 F. An ideal regenerator is also incorporated into the 
cycle. Determine the compressor work, the turbine work, and the thermal 
efficiency of the cycle. 

 REG 

COMP  TURB  TURB  COMP  

CC

CC
I.C.

1 

2 4 

10

6 

7 8 

9 

5 

 
 
 P

2
/P

1
 = P

4
/P

3
 = P

6
/P

7
 = P

8
/P

9
 = 8.0 

P
1
 = 14 lbf/in2 

T
1
 = T

3
 = 70 F,   T

6
 = T

8
 = 2000 F 

Assume const. specific heat 
   s

2
 = s

1
 and s

4
 = s

3
 

  T
4
 = T

2
 = T

1
(P

2
/P

1
)
k-1
k  = 529.67(8)0.2857 = 959.4 R

1 

2 

3 

s 

T 

4 

5 

6 

7 

8 

9 

10

 
Total compressor work  

   -w
C
 = 2 ×(-w

12
) = 2C

P0
(T

2
 - T

1
) = 2 × 0.24(959.4 - 529.67) = 206.3 Btu/lbm 

Also s
6
 = s

7
 and s

8
 = s

9
 

   ⇒  T
7
 = T

9
 = T

6





P7

P6

k-1
k  = 2459.67



1

8
0.2857

 = 1357.9 R 

Total turbine work 

      w
T
 = 2× w

67
 = 2C

P0
(T

6
 - T

7
) = 2 × 0.24(2459.67 - 1357.9) = 528.85 Btu/lbm 

      w
NET

 = 528.85 - 206.3 = 322.55 Btu/lbm 

 

Ideal regenerator:  T
5
 = T

9
,  T

10
 = T

4
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   ⇒ q
H

 = (h
6
 - h

5
) + (h

8
 - h

7
) = 2C

P0
(T

6
 - T

5
) 

       = 2 × 0.24(2459.67 - 1357.9) = w
T
 = 528.85 Btu/lbm 

     η
TH

 = w
NET

/q
H

 = 322.55/528.85 = 0.61 
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11.216E 

  Repeat Problem 11.215, but assume that each compressor stage and each turbine 
stage has an isentropic efficiency of 85%. Also assume that the regenerator has an 
efficiency of 70%. 

 
  T

4S
 = T

2S
 = 959.4 R,   -w

CS
 = 206.3 

 T
7S

 = T
9S

 = 1357.9 R,  w
TS

 = 528.85 

 ⇒    -w
C
 = -w

SC
/η

SC
 = 242.7 Btu/lbm 

 -w
12

 = -w
34

 = 242.7/2 = 121.35 Btu/lbm 

 T
2
 = T

4
 = T

1
 + (-w

12
/C

P0
) 

      = 529.67 + 121.35/0.24 = 1035.3 R 1 

2 

3 

s

T 

 

4 
5 

6 

7 

8 

9 

4S

9S7S

2S

 
 w

T
 = η

T
 w

TS
 = 449.5 Btu/lbm 

 T
7
 = T

9
 = T

6
 - (+w

67
/C

P0
) = 2459.67 - 449.5/2×0.24 = 1523 R 

 η
REG

 = 
h

5
 - h

4

h
9
 - h

4
 = 

T
5
 - T

4

T
9
 - T

4
 = 

T
5
 - 1035.3

1523 - 1035.3 = 0.7     ⇒  T
5
 = 1376.7 R 

 q
H

 = C
P0

(T
6
 - T

5
) + C

P0
(T

8
 - T

7
) 

      = 0.24(2459.67 - 1376.7) + 0.24(2459.67 - 1523) = 484.7 Btu/lbm 

 w
NET

 = w
T
 + w

C
 = 449.5 - 242.7 = 206.8 Btu/lbm 

 η
TH

 = w
NET

/q
H

 = 206.8/484.7 = 0.427 
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11.217E 
  Consider a small ammonia absorption refrigeration cycle that is powered by solar 

energy and is to be used as an air conditioner. Saturated vapor ammonia leaves 
the generator at 120 F, and saturated vapor leaves the evaporator at 50 F. If 3000 
Btu of heat is required in the generator (solar collector) per pound-mass of 
ammonia vapor generated, determine the overall performance of this system. 

 
 NH

3
 absorption cycle: 

sat. vapor at 120 F exits the generator. 
Sat. vapor at 50 F exits the evaporator 

  q
H

 = q
GEN

 = 3000 Btu/lbm NH
3
  

      out of generator. 1 2 

T 

s 

GEN.  
EXIT

EVAP 
EXIT

120F

50 F

 
 q

L
 = h

2
 - h

1
 = h

G 50 F
 - h

F 120 F
 = 624.28 - 178.79  

     = 445.49 Btu/lbm   ⇒   q
L
/q

H
 = 445.49/3000 = 0.1485 
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