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CHAPTER 7  
 
  SUBSECTION    PROB NO. 
 
  Concept-Study Guide Problems      92-96 
  Heat Engines and Refrigerators      97-100 
  Carnot Cycles and Absolute Temperature   101-110 
  Finite ∆T Heat Transfer     111-114 
  Review Problems      115-117 
  Ideal Gas Carnot Cycles        118 
 
 
  This problem set compared to the fifth edition chapter 7 set and the current 

chapter 7 SI problem set. 
 

New 5th SI New 5th SI New 5th SI 
92 new 2 101 55 40 110 70 63 
93 new 3 102 56 44 111 59 80 
94 new 5 103 58 47 112 61 75 
95 new 7 104 60 48 113 66 73 
96 new 15 105 63 51 114 62 61 
97 54 20 106 64 60 115 67 84 
98 new 22 107 65 72 116 71 87 
99 new 30 108 68 - 117 72 91 
100 57 26 109 69 62 118 73 79mod 
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Concept Problems 
 
 
7.92E 
 A gasoline engine produces 20 hp using 35 Btu/s of heat transfer from burning 

fuel. What is its thermal efficiency and how much power is rejected to the 
ambient? 

 
   Conversion Table A.1:   20 hp = 20 × 2544.4/3600 Btu/s = 14.14 Btu/s 
 

   Efficiency:               ηTH = W
.

out/Q
.

H = 
14.14

35  = 0.40 

 
   Energy equation:    Q

.
L = Q

.
H - W

.
out  = 35 – 14.14 = 20.9 Btu/s 

 
                              Q

.
H 

                             ⇒ 
 

 

Q
.

L 

⇒ 
 
W
.

out 

⇒ 
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7.93E 
 A refrigerator removes 1.5 Btu from the cold space using 1 Btu work input. How 

much energy goes into the kitchen and what is its coefficient of performance? 
 
   C.V. Refrigerator. The energy QH goes into the kitchen air. 
   Energy Eq.:  QH = W + QL = 1 + 1.5 = 2.5 btu 

   COP:   β = 
QL
W  = 1.5 / 1 = 1.5 

 
The back side of 
the refrigerator 
has a black grille 
that heats the 
kitchen air. Other 
models have that 
at the bottom 
with a fan to 
drive the air over 
it. 

 

 

1

2

Air in, 3

Air out, 4

 

 
 
7.94E 
 A window air-conditioner unit is placed on a laboratory bench and tested in 

cooling mode using 0.75 Btu/s of electric power with a COP of 1.75. What is the 
cooling power capacity and what is the net effect on the laboratory? 

 
  Definition of COP: β = Q

.
L / W

.
 

  Cooling capacity: Q
.

L = β W
.

 = 1.75 × 0.75 = 1.313 Btu/s 
 
  For steady state operation the Q

.
L comes from the laboratory and Q

.
H goes to the 

laboratory giving a net to the lab of  W
.

 = Q
.

H - Q
.

L = 0.75 Btu/s, that is heating it. 
 
 
7.95E 
 A car engine takes atmospheric air in at 70 F, no fuel, and exhausts the air at 0 F 

producing work in the process. What do the first and the second laws say about 
that? 

 
  Energy Eq.:      W = QH − QL = change in energy of air.       OK 
  2nd law:            Exchange energy with only one reservoir.  NOT OK. 
  This is a violation of the statement of Kelvin-Planck. 
 
  Remark:  You cannot create and maintain your own energy reservoir. 
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7.96E 
 A large stationary diesel engine produces 20 000 hp with a thermal efficiency of 

40%. The exhaust gas, which we assume is air, flows out at 1400 R and the intake 
is 520 R. How large a mass flow rate is that if that accounts for half the Q

.
L?  Can 

the exhaust flow energy be used? 
 
   Power   20 000 hp = 20 000 × 2544.4 / 3600 = 14 136 Btu/s 

  Heat engine: Q
.

H = W
.

out/ηTH = 
14 136

0.4  = 35 339 Btu/s 

 
   Energy equation:    Q

.
L = Q

.
H - W

.
out  = 35 339 – 14 136 = 21 203 Btu/s 

 

   Exhaust flow:        12Q
.

L = m
.

air(h1400 - h520) 
 

     m
.

air = 12 
Q
.

L
h1400 - h520

 = 12 
21 203

343.02 - 124.38 = 48.49 lbm/s 
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Heat Engines and Refrigerators 
 
7.97E 
 Calculate the thermal efficiency of the steam power plant cycle described in 

Problem 6.167. 
 Solution: 
 
 From solution to problem 6.167, 168 

  W
.

NET = 33 000 - 400 = 32 600 hp = 8.3 ×107 Btu/h 

  Q
.
H,tot = Q

.
econ + Q

.
gen 

   = 4.75 ×107 + 2.291 ×108 = 2.766 ×108 Btu/h;    

   η = 
W
.

Q
.

H
 = 

8.3 ×107

2.766 ×108 = 0.30 
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7.98E 
  A farmer runs a heat pump with a 2 kW motor. It should keep a chicken hatchery 

at 90 F, which loses energy at a rate of 10 Btu/s to the colder ambient Tamb. What 
is the minimum coefficient of performance that will be acceptable for the heat 
pump?  

Power input:  W
.

 = 2 kW = 2 × 2544.4 / 3600 = 1.414 Btu/s  
Energy Eq. for hatchery: Q

.
H = Q

.
Loss = 10 Btu/s 

Definition of COP:  β = COP =  
Q
.

H
W
.  = 

10
1.414 = 7.07 

 
 

QleakQ QHL

W = 2  kW

HP
cb  
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7.99E 
  Calculate the amount of work input a refrigerator needs to make ice cubes out of a 

tray of  0.5 lbm liquid water at 50 F. Assume the refrigerator has β = 3.5 and a 
motor-compressor of 750 W. How much time does it take if this is the only 
cooling load? 

 Solution: 
C.V. Water in tray. We neglect tray mass. 

  Energy Eq.:   m(u2 − u1) = 1Q2 − 1W2  
Process  :  P = constant = Po 

1W2 = ∫ P dV = Pom(v2 − v1) 

 1Q2 = m(u2 − u1) + 1W2  = m(h2 − h1) 
 
Tbl. F.7.1 : h1 = 18.05 btu/lbm,   Tbl. F.7.4 : h2 = - 143.34 kJ/kg 

1Q2 = 0.5(-143.34 – 18.05 ) = - 80.695 Btu 
 
Consider now refrigerator 

β = QL/W 
W = QL/β = - 1Q2/ β = 80.695/3.5 = 23.06 Btu 

 
For the motor to transfer that amount of energy the time is found as 
 

W = ∫ W
.

 dt = W
.

 ∆t 
   

∆t = W/W
.

 = (23.06 × 1055)/750 = 32.4 s 
 

Comment:  We neglected a baseload of the refrigerator so not all the 750 W are available 
to make ice, also our coefficient of performance is very optimistic and finally the 
heat transfer is a transient process. All this means that it will take much more time 
to make ice-cubes.  
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7.100E 
 In a steam power plant 1000 Btu/s is added at 1200 F in the boiler, 580 Btu/s is 

taken out at 100 F in the condenser and the pump work is 20 Btu/s. Find the plant 
thermal efficiency. Assume the same pump work and heat transfer to the boiler as 
given, how much turbine power could be produced if the plant were running in a 
Carnot cycle? 
 
 Solution: 
 

 

WT

QH

QL
.

WP, in

 

CV. Total plant:  
Energy Eq.: 
           Q

.
H + W

.
P,in = W

.
T + Q

.
L 

 
 W

.
T = 1000 + 20 − 580 = 440 Btu/s 

    ηTH = 
W
.

T - W
.

P,in
Q
.

H
 = 

420
1000 = 0.42 

 

  ηcarnot = W
.

net/ Q
.

H = 1 − TL/TH = 1 − 
100 + 459.67
1200 + 459.67 = 0.663 

 W
.

T − W
.

P,in = ηcarnotQ
.

H = 663 Btu/s    =>      W
.

T = 683 
Btu

s  
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Carnot Cycles and Absolute T 
 
7.101E 
 Calculate the thermal efficiency of a Carnot-cycle heat engine operating between 

reservoirs at 920 F and 110 F. Compare the result with that of Problem 7.97. 
 
Solution: 
 

  TH = 920 F ,      TL = 110 F 

  ηCarnot = 1 − 
TL
TH

 = 1 - 
110 + 459.67
920 + 459.67 = 0.587    (about twice 7.97: 0.3) 
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7.102E 
 A car engine burns 10 lbm of fuel (equivalent to addition of QH) at 2600 R and 

rejects energy to the radiator and the exhaust at an average temperature of 1300 
R. If the fuel provides 17 200 Btu/lbm what is the maximum amount of work the 
engine can provide? 
Solution: 

  A heat engine  QH = m qfuel =  10 × 17200 = 170 200 Btu 

  Assume a Carnot efficiency (maximum theoretical work) 

    η  =  1 − 
TL
TH

 = 1 − 
1300
2600 = 0.5 

    W = η QH = 0.5 × 170 200  = 85 100 Btu 

 
 

  

 Exhaust flow

Air intake filter

Coolant flow

Atm.
airShaft

Fan

power

Radiator
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7.103E 
 An air-conditioner provides 1 lbm/s of air at 60 F cooled from outside 

atmospheric air at 95 F. Estimate the amount of power needed to operate the air-
conditioner. Clearly state all assumptions made. 
 
Solution: 
Consider the cooling of air which needs a heat transfer as 
 Q

.
air = m

.
 ∆h ≅ m

.
 Cp ∆T = 1 × 0.24 × (95 - 60) = 8.4 Btu/s 

Assume Carnot cycle refrigerator 

  β = 
Q
.

L
W
.  = Q

.
L / (Q

.
H - Q

.
L ) ≅ 

TL
TH - TL

 = 
60 + 459.67

95 - 60  = 14.8 

  W
.

  =  Q
.
L / β = 

8.4
14.8 = 0.57 Btu/s  

 
  

This estimate is the theoretical maximum 
performance. To do the required heat 
transfer   TL  ≅ 40 F   and  TH = 110 F are 
more likely; secondly  
 β < βcarnot 

H Q 

W 

L Q 

REF

95 F 60 F
cb
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7.104E 
 We propose to heat a house in the winter with a heat pump. The house is to be 

maintained at 68 F at all times. When the ambient temperature outside drops to 15 
F, the rate at which heat is lost from the house is estimated to be 80000 Btu/h. 
What is the minimum electrical power required to drive the heat pump? 
 

 Solution: 
 
Minimum power if we  
assum  a Carnot cycle e
Q
.

H = Q
.

leak  = 80 000 
Btu/h 

QleakQ QHL

W

HP

 

 

  β′ = 
Q
.

H
W
.

IN
 = 

TH
TH - TL

 = 
527.7

53  = 9.957 

  ⇒ W
.

IN = 80 000 / 9.957 = 8035 Btu/h = 2.355 kW 
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7.105E 
 An inventor has developed a refrigeration unit that maintains the cold space at 14 

F, while operating in a 77 F room. A coefficient of performance of 8.5 is claimed. 
How do you evaluate this? 
 
 Solution: 
 Assume Carnot cycle then 

  

βCarnot = 
QL
Win

 = 
TL

TH-TL
 = 

14 + 459.67
77 - 14  = 7.5 

   
8.5  >  βCarnot   ⇒   impossible claim 
 

H Q 

W 

L Q 
T  = 14 F L 

T  = 77 FH

REF
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7.106E 
 Liquid sodium leaves a nuclear reactor at 1500 F and is used as the energy source 

in a steam power plant. The condenser cooling water comes from a cooling tower 
at 60 F. Determine the maximum thermal efficiency of the power plant. Is it 
misleading to use the temperatures given to calculate this value? 
 
 Solution: 
 

LIQ Na

�������
�������REACTOR 

ENERGY
TO H O 2 

1500 F 
���������������
���������������
���������������
���������������

COND. 
COOLING 
TOWER 

ENERGY
FROM

STEAM 
POWER 
PLANT 

60 F 

LIQ H O 2  
  TH = 1500 F = 1960 R,   TL = 60 F = 520 R 

  ηTH MAX = 
TH - TL

TH
 = 

1960 - 520
19860  = 0.735 

 It might be misleading to use 1500 F as the value for TH, since there is not 
a supply of energy available at a constant temperature of 1500 F (liquid Na is 
cooled to a lower temperature in the heat exchanger). 
  ⇒ The Na cannot be used to boil H2O at 1500 F. 

 Similarly, the H2O leaves the cooling tower and enters the condenser at 
60 F, and leaves the condenser at some  higher temperature. 
⇒ The water does not provide for condensing steam at a constant temperature of 
60 F. 
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7.107E 
 A house is heated by an electric heat pump using the outside as the low-

temperature reservoir. For several different winter outdoor temperatures, estimate 
the percent savings in electricity if the house is kept at 68 F instead of 75 F. 
Assume that the house is losing energy to the outside directly proportional to the 
temperature difference as Q. loss = K(TH - TL). 
 
 Solution: 
   Heat Pump   Q

.
LOSS ∝ (TH - TL) 

  
Max
Perf.    

Q
.

H
W
.

in
 = 

TH
TH - TL

 = 
K(TH - TL)

W
.

in
,        W

.
in = 

K(TH - TL)2

TH
 

  A: THA
 = 75 F = 534.7 R    B: THB

 = 68 F = 527.7 R 

  TL, F      W
.

INA/K       W
.

INB/K       % saving 

            -10            13.512          11.529           14.7 % 
   10              7.902             6.375           19.3 % 
   30              3.787             2.736           27.8 % 
   50              1.169             0.614           47.5 % 
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7.108E 
 Refrigerant-22 at 180 F, x = 0.1 flowing at 4 lbm/s is brought to saturated vapor in 

a constant-pressure heat exchanger. The energy is supplied by a heat pump with a 
low temperature of 50 F. Find the required power input to the heat pump. 
 
 Solution: 
 C.V. Heat exchanger 

     m
.

1 = m
.

2 ;       

     m
.

1h1 + Q
.

H = m
.

1h2 

Assume a Carnot heat pump, TH = 640 R,  
TL = 510 R 

          β′  = 
Q
.

H

W
.  =  

TH
TH - TL

 = 4.923 

H Q 

W 

L Q 

T L 

HP

1 2
cb

 

  Table F.9.1:    
       h1 = hf + x1hfg = 68.5 + 0.1 × 41.57 = 72.66 Btu/lbm,  

      h2 = hg = 110.07 Btu/lbm 

  Energy equation for line 1-2:  
    Q

.
H  = m

.
R-12(h2 - h1)  = 4 (110.07 - 72.66) = 149.64 Btu/s 

     W
.

 =  
Q
.

H
β′   = 

149.64
4.923  = 30.4 Btu/s 
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7.109E 
 A heat engine has a solar collector receiving 600 Btu/h per square foot inside 

which a transfer media is heated to 800 R. The collected energy powers a heat 
engine which rejects heat at 100 F. If the heat engine should deliver 8500 Btu/h 
what is the minimum size (area) solar collector? 
 
 Solution: 
  TH = 800 R   TL = 100 + 459.67 = 560 R 

  ηHE =  1 − 
TL
TH

 = 1 - 
560
800 = 0.30 

  W
.

 = η Q
.

H    =>     Q
.

H  = 
W
.

η   = 
8500
0.30   = 28 333 Btu/h 

  Q
.

H  = 600 A   =>   A = 
Q
.

H
600 = 47 ft2 
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7.110E 
 Six-hundred pound-mass per hour of water runs through a heat exchanger, 

entering as saturated liquid at 250 F and leaving as saturated vapor. The heat is 
supplied by a Carnot heat pump operating from a low-temperature reservoir at 60 
F. Find the rate of work into the heat pump. 
 
 Solution: 
 
 C.V. Heat exchanger 

m
.

1 = m
.

2 ;           m
.

1h1 + Q
.

H = m
.

1h2 

 
Table F.7.1:   h1 = 218.58 Btu/lbm      

                      h2 = 1164.19 Btu/lbm 

 

H Q 

W 

L Q 

T L 

HP

1 2

 

   Q
.

H = 
600
3600 (1164.19 - 218.58) = 157.6 Btu/s 

  Assume a Carnot heat pump, TH = 250 F = 710 R. 

  β = Q
.

H/W
.

 = 
TH

TH - TL
 = 

710
190 = 3.737 

  W
.

 = Q
.

H/β = 157.6/3.737 = 42.2 Btu/s 
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Finite ∆T Heat Transfer 
 
7.111E 
 A car engine operates with a thermal efficiency of 35%. Assume the air-

conditioner has a coefficient of performance that is one third of the theoretical 
maximum and it is mechanically pulled by the engine. How much fuel energy 
should you spend extra to remove 1 Btu at 60 F when the ambient is at 95 F? 
 Solution: 
 Air conditioner 

  β  =  
QL
W  = 

TL
TH - TL

 = 
60 + 459.67

95 - 60  = 14.8 

  βactual = β / 3 = 4.93 
  W = QL / β = 1 / 4.93 = 0.203 Btu  
Work from engine 
  W = ηeng Qfuel = 0.203 Btu 

    Qfuel = W / ηeng = 
0.203
0.35  = 0.58 Btu 

 
 

W 

L Q   

TH

H Q 

T L 

REF

FuelQ 

H.E.

L eng Q 

FUEL
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7.112E 
 A heat pump cools a house at 70 F with a maximum of 4000 Btu/h power input. 

The house gains 2000 Btu/h per degree temperature difference to the ambient and 
the heat pump coefficient of performance is 60% of the theoretical maximum. 
Find the maximum outside temperature for which the heat pump provides 
sufficient cooling. 
Solution: 
 

 

QleakQ QH L

W = 4000 Btu/h

HP TL
 

Here: 
   TL = Thouse 

   TH = Tamb 

 

 
  In this setup the low temperature space is the house and the high 
 temperature space is the ambient. The heat pump must remove the gain or 
 leak heat transfer to keep it at a constant temperature. 
   Q

.
leak = 2000 (Tamb - Thouse) = Q

.
L    

 which must be removed by the heat pump. 
 β’ = Q

.
H / W

.
 = 1 + Q

.
L / W

.
 = 0.6 β’carnot = 0.6 Tamb / (Tamb - Thouse ) 

 Substitute in for Q
.

L and multiply with (Tamb - Thouse): 

  (Tamb - Thouse ) + 2000 (Tamb - Thouse )
2 / W

.
 = 0.6 Tamb 

 Since  Thouse = 529.7 R  and  W
.

 = 4000 Btu/h it follows 

   T2
amb  - 1058.6 Tamb + 279522.7 = 0 

  Solving    =>      Tamb = 554.5 R = 94.8 F  
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7.113E 
 A house is cooled by an electric heat pump using the outside as the high-

temperature reservoir. For several different summer outdoor temperatures 
estimate the percent savings in electricity if the house is kept at 77 F instead of 68 
F. Assume that the house is gaining energy from the outside directly proportional 
to the temperature difference. 
 
 Solution: 
 
  Air-conditioner (Refrigerator)   Q

.
LEAK ∝ (TH - TL) 

  
Max
Perf.  

Q
.

L
W
.

in
 = 

TL
TH - TL

 = 
K(TH - TL)

W
.

in
,   W

.
in = 

K(TH - TL)2

TL
 

  A: TLA = 68 F = 527.7 R    B: TLB = 77 F = 536.7 R 

       TH, F      W
.

INA/K       W
.

INB/K       % saving 

       115             4.186              2.691           35.7 % 
       105             2.594              1.461           43.7 % 
          95              1.381              0.604           56.3 % 
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7.114E 
 A thermal storage is made with a rock (granite) bed of 70 ft3 which is heated to 

720 R using solar energy. A heat engine receives a QH from the bed and rejects 
heat to the ambient at 520 R. The rock bed therefore cools down and as it reaches 
520 R the process stops. Find the energy the rock bed can give out. What is the 
heat engine efficiency at the beginning of the process and what is it at the end of 
the process? 
 Solution: 
 Assume the whole setup is reversible and that the heat engine operates in a 
 Carnot cycle. The total change in the energy of the rock bed is  
  u2 − u1 = q = C ∆T = 0.21 (720 - 520) = 42 Btu/lbm 
  m = ρV = 172 × 70 = 12040 lbm;    Q = mq = 505 680 Btu 
 To get the efficiency assume a Carnot cycle device 
  η = 1 - To / TH = 1 - 520/720 = 0.28    at the beginning of process 
  η = 1 - To / TH = 1 - 520/520 = 0               at the end of process 
 

 
W

Q Q
H L

HE
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Review Problems 
 
7.115E 
 We wish to produce refrigeration at −20 F. A reservoir is available at 400 F and 

the ambient temperature is 80 F, as shown in Fig. P7.84. Thus, work can be done 
by a cyclic heat engine operating between the 400 F reservoir and the ambient. 
This work is used to drive the refrigerator. Determine the ratio of the heat 
transferred from the 400 F reservoir to the heat transferred from the −20 F 
reservoir, assuming all processes are reversible. 
 
 Solution: Equate the work from the heat engine to the refrigerator. 
 

 

W

QL1

QH1

HE

QL2

QH2

REF

T  = 860 RH T  = 540 Ro

T  = 540 Ro T  = 440 RL  

W = QH1 






TH - TO

TH
 

also 

W = QL2 






TO - TL

TL
 

 

    
QH
QL

 = 






TO - TL

TL
 






TH

TH - TO
 = 

100
440 × 

860
320 = 0.611 



   Sonntag, Borgnakke and Wylen 
 

 
7.116E 
 Air in a rigid 40 ft3 box is at 540 R, 30 lbf/in.2. It is heated to 1100 R by heat 

transfer from a reversible heat pump that receives energy from the ambient at 540 
R besides the work input. Use constant specific heat at 540 R. Since the 
coefficient of performance changes write dQ = mair Cv dT and find dW. Integrate 
dW with temperature to find the required heat pump work. 
 
 Solution: 

  COP: β′ = 
QH
W  = 

QH
QH − QL

  ≅ 
TH

TH − TL
 

  mair = P1V1 / RT1 = (30 × 40 × 144) / (540 × 53.34) = 6.0 lbm 

  dQH = mair Cv dTH = β′ dW  ≅  
TH

TH − TL
  dW 

   =>       dW = mair Cv [ 
TH

TH − TL
 ] dTH  

  1W2 = ∫ mair Cv ( 1 - 
TL
T  ) dT = mair Cv ∫ ( 1 - 

TL
T  ) dT  

          = mair Cv [T2 - T1 - TL ln 
T2
T1

 ] 

          = 6.0 × 0.171 [1100 - 540 – 540 ln (
1100
540 )] = 180.4 Btu 
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7.117E 
   A 350-ft3 tank of air at 80 lbf/in.2, 1080 R acts as the high-temperature reservoir 

for a Carnot heat engine that rejects heat at 540 R. A temperature difference of 45 
F between the air tank and the Carnot cycle high temperature is needed to transfer 
the heat. The heat engine runs until the air temperature has dropped to 700 R and 
then stops. Assume constant specific heat capacities for air and find how much 
work is given out by the heat engine. 
 Solution: 
 

 

QH
W

QL

HE

AIR

540 R
 

TH = Tair - 45 ,     TL = 540 R 

mair = 
P1V
RT1

 = 
80 × 350 × 144
53.34 × 1080  = 69.991 

lbm 

dW = ηdQH = 








1 - 
TL

Tair - 45 dQH 

dQH = -mairdu = -mairCvdTair 

 

 W = ⌡⌠dW = -mairCv
⌡

⌠









1 - 
TL

Ta-45 dTa = -mairCv







Ta2-Ta1-TL ln 
Ta2-45
Ta1-45  

         = -69.991 × 0.171× 
700 - 1080 - 540 ln 

655
1035  = 1591 Btu 


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Ideal Gas Garnot Cycle 
 
7.118E 
 Air in a piston/cylinder goes through a Carnot cycle with the P-v diagram shown 

in Fig. 7.24. The high and low temperatures are 1200 R and 600 R respectively. 
The heat added at the high temperature is 100 Btu/lbm and the lowest pressure in 
the cycle is 10 lbf/in.2. Find the specific volume and pressure at all 4 states in the 
cycle assuming constant specific heats at 80 F. 
 
 Solution: 

   qH = 100 Btu/lbm          TH = 1200 R 
   TL = 600 R                P3 = 10 lbf/in.2 
   Cv = 0.171 Btu/lbm R  ;           R = 53.34 ft-lbf/lbm-R 

 The states as shown in figure 7.21  
  1: 1200 R ,       2: 1200 R,        3: 10 psi, 600 R          4: 600 R 
 
   v3 = RT3 / P3 = 53.34 × 600 /(10 × 144) = 22.225 ft3/lbm 
  2→3  Eq.7.11 & Cv = constant   
     = > Cv ln (TL / TH) + R ln (v3/v2) = 0 
   = > ln (v3/v2) = - (Cv / R) ln (TL / TH)  
             = - (0.171/53.34) ln (600/1200)  = 1.7288 
   = > v2 = v3 / exp (1.7288) = 22.225/5.6339 = 3.9449 ft3/lbm 
  1→2 qH = RTH ln (v2 / v1) 

      ln (v2 / v1) = qH /RTH = 100 × 778/(53.34 × 1200) = 1.21547 

   v1 = v2 / exp (1.21547) = 1.1699 ft3/lbm 

   v4 = v1 × v3 / v2 = 1.1699 × 22.225/3.9449 = 6.591 ft3/lbm 

   P1 = RT1 / v1 = 53.34 × 1200/(1.1699×144) = 379.9 psia 

   P2 = RT2 / v2 = 53.34 × 1200/(3.9449 × 144) = 112.7 psia 

   P4 = RT4 / v4 = 53.34 × 600/(6.591 × 144) = 33.7 psia 
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