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 Correspondence table 
 CHAPTER 2  6th edition       Sonntag/Borgnakke/Wylen 
 
 The correspondence between the problem set in this sixth edition versus the 

problem set in the 5'th edition text. Problems that are new are marked new and 
those that are only slightly altered are marked as modified (mod). 

 
 Study guide problems 2.1-2.22 and 2.23-2.26 are all new problems. 
 

New 5th Ed. New 5th Ed. New 5th Ed. 
27 1 47 new 67 24 
28 new 48 16 68 new 
29 2 49 17 69 new 
30 new 50 new 70 23 
31 3 51 new 71 new 
32 new 52 19 72 30 
33 5 53 new 73 32 
34 6 54 34 74 33 
35 7 55 29 75 new 
36 9 56 new 76 37 
37 10 57 28 mod 77 27 
38 12 58 new 78 new 
39 new 59 20 79 38 
40 new 60 26 80 new 
41 new 61 new 81 31 
42 11 62 21 82 new 
43 13 63 new 83 22 
44 new 64 new 84 35 
45 18 65 15 85 36 
46 14 66 new 86 new 

 
 English Unit Problems 

New 5th Ed. SI New 5th Ed. SI 
87 new - 97 43E 43 
88 new 11 98 new 50 
89 new 12 99 new 53 
90 new 19 100 45E 70 
91 new 20 101 46E 45 
92 new 24 102 new 82 
93 39E 33 103 48E 55 
94 40E - 104 new 80 
95 new 47 105 47E 77 
96 42E 42    

 Design and Open ended problems 106-116   are from 5th edition problems 2.50-
2.60 
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Concept-Study Guide Problems 
 
2.1 
  Make a control volume around the turbine in the steam power plant in Fig. 1.1 and 

list the flows of mass and energy that are there. 
 
 Solution: 

We see hot high pressure steam flowing in 
at state 1 from the steam drum through a 
flow control (not shown). The steam leaves 
at a lower pressure to the condenser (heat 
exchanger) at state 2. A rotating shaft gives 
a rate of energy (power) to the electric 
generator set. 

 

WT

1

2  
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2.2 
  Make a control volume around the whole power plant in Figure 1.2 and with the help 

of Fig. 1.1 list what flows of mass and energy are in or out and any storage of 
energy. Make sure you know what is inside and what is outside your chosen C.V. 

 
 Solution: 

 Smoke
stack

Boiler
building

Coal conveyor system

Dock
Turbine house

Storage
gypsum

Coal
storage

flue
gas

cb

 

 

 
  

 
Underground

power cable

Welectrical

Hot water
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Coal
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m
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Storage for later

Gypsum, fly ash, slag
transport out:

Cold return m

m

Combustion air
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2.3 
  Make a control volume that includes the steam flow around in the main turbine loop 

in the nuclear propulsion system in Fig.1.3. Identify mass flows (hot or cold) and 
energy transfers that enter or leave the C.V.  

 
 Solution: 

 

Welectrical

1

2

WT

1

3

Electric
power gen.

5 4

6 7
Cooling by seawater

Condensate
to steam gen.

cold

Hot steam from generator

cb

 

 
The electrical power 
also leaves the C.V. 
to be used for lights, 
instruments and to 
charge the batteries. 
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2.4 
  Take a control volume around your kitchen refrigerator and indicate where the 

components shown in Figure 1.6 are located and show all flows of energy transfer. 
 
 Solution: 
 

 
The valve and the 
cold line, the 
evaporator, is 
inside close to the 
inside wall and 
usually a small 
blower distributes 
cold air from the 
freezer box to the 
refrigerator room. 

cb

W
.

Q
.

Q leak

 

 
The black grille in 
the back or at the 
bottom is the 
condenser that 
gives heat to the 
room air. 
 
The compressor 
sits at the bottom.  
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2.5 
  An electric dip heater is put into a cup of water and heats it from 20oC to 80oC. 

Show the energy flow(s) and storage and explain what changes. 
 
 Solution: 
 

Electric power is converted in the heater 
element (an electric resistor) so it becomes 
hot and gives energy by heat transfer to 
the water. The water heats up and thus 
stores energy and as it is warmer than the 
cup material it heats the cup which also 
stores some energy. The cup being 
warmer than the air gives a smaller 
amount of energy (a rate) to the air as a 
heat loss. 

 Welectric

Q loss

C B
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2.6 
  Separate the list P, F, V, v, ρ, T, a, m, L, t and V into intensive, extensive and non-

properties. 
 

 Solution: 
 
 Intensive properties are independent upon mass:  P, v, ρ, T  
 Extensive properties scales with mass:            V, m  
 Non-properties:             F, a, L, t, V 
  
 Comment:   You could claim that acceleration a and velocity V  are physical 

properties for the dynamic motion of the mass, but not thermal properties. 
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2.7 
  An escalator brings four people of total 300 kg, 25 m up in a building. Explain what 

happens with respect to energy transfer and stored energy. 
 

 Solution: 
 
 

 
 
The four people (300 kg) have their 
potential energy raised, which is how 
the energy is stored. The energy is 
supplied as electrical power to the 
motor that pulls the escalator with a 
cable.  
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2.8 
  Water in nature exist in different phases like solid, liquid and vapor (gas). Indicate 

the relative magnitude of density and specific volume for the three phases. 
 

 Solution: 
 
 Values are indicated in Figure 2.7 as density for common substances. More 

accurate values are found in Tables A.3, A.4 and A.5 
 
 Water as solid (ice) has density of around 900 kg/m3 
 Water as liquid has density of around 1000 kg/m3 
 Water as vapor has density of around 1 kg/m3    (sensitive to P and T) 
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2.9 
  Is density a unique measure of mass distribution in a volume? Does it vary? If so, on 

what kind of scale (distance)? 
 

 Solution: 
 
 Density is an average of mass per unit volume and we sense if it is not evenly 

distributed by holding a mass that is more heavy in one side than the other. 
Through the volume of the same substance (say air in a room) density varies only 
little from one location to another on scales of meter, cm or mm. If the volume 
you look at has different substances (air and the furniture in the room) then it can 
change abruptly as you look at a small volume of  air next to a volume of 
hardwood. 

 
 Finally if we look at very small scales on the order of the size of atoms the density 

can vary infinitely, since the mass (electrons, neutrons and positrons) occupy very 
little volume relative to all the empty space between them. 
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2.10 
  Density of fibers, rock wool insulation, foams and cotton is fairly low. Why is that? 
 

 Solution: 
 
 All these materials consists of some solid substance and mainly air or other gas. 

The  volume of fibers (clothes) and rockwool that is solid substance is low 
relative to the total volume that includes air. The overall density is 

     ρ = 
m
V = 

msolid + mair 
Vsolid + Vair

  

 where most of the mass is the solid and most of the volume is air. If you talk 
about the density of the solid only, it is high. 
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2.11 
  How much mass is there approximately in 1 L of mercury (Hg)?  Atmospheric air? 
 

 Solution: 
 

 A volume of 1 L equals 0.001 m3, see Table A.1. From Figure 2.7 the density is 
in the range of 10 000 kg/m3 so we get 

 
    m = ρV = 10 000 kg/m3 × 0.001 m3 = 10 kg 
 A more accurate value from Table A.4 is  ρ = 13 580 kg/m3. 
 
 For the air we see in Figure 2.7 that density is about 1 kg/m3 so we get 
 
    m = ρV = 1 kg/m3 × 0.001 m3 = 0.001 kg 
 
  A more accurate value from Table A.5 is  ρ = 1.17 kg/m3 at 100 kPa, 25oC. 
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2.12 
  Can you carry 1 m3 of liquid water? 
 
 Solution: 
 
 The density of liquid water is about 1000 kg/m3 from Figure 2.7, see also Table 

A.3. Therefore the mass in one cubic meter is 

    m = ρV = 1000 kg/m3 × 1 m3 = 1000 kg  
 
 and we can not carry that in the standard gravitational field. 
 
 
2.13 
 A manometer shows a pressure difference of 1 m of liquid mercury. Find ∆P in kPa. 
 
 Solution: 
 

           Hg :  L  = 1 m;     ρ = 13 580 kg/m3 from Table A.4  (or read Fig 2.7) 
The pressure difference ∆P balances the column of height L so from Eq.2.2 

 ∆P = ρ g L  = 13 580 kg/m3 × 9.80665 m/s2 × 1.0 m × 10-3 kPa/Pa 
       = 133.2 kPa 
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2.14 
  You dive 5 m down in the ocean. What is the absolute pressure there? 
 
 Solution: 
           
 The pressure difference for a column is from Eq.2.2 and the density of water is 

from Table A.4. 
 

 ∆P = ρgH 
      = 997  kg/m3 × 9.81 m/s2 × 5 m 
      = 48 903 Pa = 48.903 kPa 
Pocean= P0 + ∆P  

           = 101.325 + 48.903 
           = 150 kPa 
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2.15 
  What pressure difference does a 10 m column of atmospheric air show? 
 
 Solution: 
 The pressure difference for a column is from Eq.2.2 

           ∆P = ρgH 

So we need density of air from Fig.2.7,  ρ = 1.2 kg/m3 

   ∆P = 1.2 kg/m3 × 9.81 ms-2 × 10 m = 117.7 Pa = 0.12 kPa 
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2.16 
 The pressure at the bottom of a swimming pool is evenly distributed. Suppose we 

look at a cast iron plate of 7272 kg lying on the ground with an area of 100 m2. What 
is the average pressure below that? Is it just as evenly distributed? 

 
 Solution: 
 The pressure is force per unit area from page 25: 
         P = F/A = mg/A = 7272 kg × (9.81 m/s2) / 100 m2 =  713.4 Pa          
 
 The iron plate being cast can be reasonable plane and flat, but it is stiff and rigid. 

However, the ground is usually uneven so the contact between the plate and the 
ground is made over an area much smaller than the 100 m2. Thus the local 
pressure at the contact locations is much larger than the quoted value above. 

 
 The pressure at the bottom of the swimming pool is very even due to the ability of 

the fluid (water) to have full contact with the bottom by deforming itself. This is 
the main difference between a fluid behavior and a solid behavior.  

 
 
         Iron plate 
           Ground 
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2.17 
 A laboratory room keeps a vacuum of 0.1 kPa. What net force does that put on the 

door of size 2 m by 1 m? 
 
 Solution: 
 
 The net force on the door is the difference between the forces on the two sides as 

the pressure times the area 
   
  F = Poutside A – Pinside A = ∆P A = 0.1 kPa × 2 m × 1 m = 200 N 
  

  Remember that kPa is kN/m2. 
 

 
Pabs = Po - ∆P 
∆P = 0.1 kPa 
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2.18 
  A tornado rips off a 100 m2 roof with a mass of 1000 kg. What is the minimum 

vacuum pressure needed to do that if we neglect the anchoring forces? 
 
 Solution: 
  
 The net force on the roof is the difference between the forces on the two sides as 

the pressure times the area 
   
  F = Pinside A – PoutsideA = ∆P A  
 That force must overcome the gravitation mg, so the balance is 
  ∆P A = mg 
 
  ∆P = mg/A = (1000 kg × 9.807 m/s2 )/100 m2 = 98 Pa = 0.098 kPa 
  
 Remember that kPa is kN/m2. 
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2.19 
 What is a temperature of –5oC in degrees Kelvin? 
 
 Solution: 

 
 
The offset from Celsius to Kelvin is 273.15 K, 
so we get 
 
 TK = TC + 273.15 = -5 + 273.15  
                  = 268.15 K 
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2.20 
 What is the smallest temperature in degrees Celsuis you can have? Kelvin? 
 
 Solution: 
  
 The lowest temperature is absolute zero which is 

at zero degrees Kelvin at which point the 
temperature in Celsius is negative 
 
           TK = 0 K = −273.15 oC 
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2.21 
 Density of liquid water is  ρ = 1008 – T/2  [kg/m3] with T in oC. If the temperature 

increases 10oC how much deeper does a 1 m layer of water become? 
 
 Solution: 
 
  The density change for a change in temperature of 10oC becomes  
 
   ∆ρ =  – ∆T/2 = –5 kg/m3  
  from an ambient density of  
   ρ = 1008 – T/2 = 1008 – 25/2 = 995.5 kg/m3  
 
      Assume the area is the same and the mass is the same    m = ρV = ρAH,  then we 

have  
   ∆m = 0 = V∆ρ + ρ∆V    ⇒   ∆V = - V∆ρ/ρ 
 
  

and the change in the height is 
  

∆H = 
∆V
A  = 

H∆V
V  = 

-H∆ρ
ρ  = 

-1 × (-5)
995.5  = 0.005 m 

 
barely measurable. 
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2.22 
  Convert the formula for water density in problem 21 to be for T in degrees Kelvin. 
  
 Solution:  
    ρ = 1008 – TC/2     [kg/m3]  
 
 We need to express degrees Celsius in degrees Kelvin 

  TC = TK – 273.15 
 and substitute into formula 

  ρ = 1008 – TC/2 = 1008 – (TK – 273.15)/2 = 1144.6 – TK/2 
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Properties and units 
 
2.23 
   A steel cylinder of mass 2 kg contains 4 L of liquid water at 25oC at 200 kPa. 

Find the total mass and volume of the system. List two extensive and three 
intensive properties of the water 

 
 Solution: 
 

 Density of steel in Table A.3:    ρ = 7820 kg/m3 

 Volume of steel:     V = m/ρ = 
2 kg

7820 kg/m3 = 0.000 256 m3 

 Density of water in Table A.4:   ρ = 997 kg/m3 

 Mass of water:      m = ρV = 997 kg/m3 ×0.004 m3 = 3.988 kg 
 
 Total mass:           m = msteel + mwater = 2 + 3.988 = 5.988 kg 

 Total volume:      V = Vsteel + Vwater = 0.000 256 + 0.004 

            = 0.004 256  m3 = 4.26 L 
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2.24 
 An apple “weighs” 80 g and has a volume of 100 cm3 in a refrigerator at 8oC. 

What is the apple density? List three intensive and two extensive properties of the 
apple. 

 
 Solution: 
 

ρ = 
m
V = 

0.08
0.0001  

kg
 m3 = 800 

kg
 m3 

 
 Intensive 

ρ = 800 
kg
 m3 ;    v = 

1
 ρ = 0.001 25 

m3

kg   

T =  8°C;  P = 101 kPa 
 
 Extensive 

m = 80 g = 0.08 kg 

V =100 cm3 = 0.1 L = 0.0001 m3 
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2.25 
  One kilopond (1 kp) is the weight of 1 kg in the standard gravitational field. How 

many Newtons (N) is that? 
  

 
F = ma = mg 
 
1 kp = 1 kg × 9.807 m/s2 = 9.807 N 
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2.26 
  A pressurized steel bottle is charged with 5 kg of oxygen gas and 7 kg of nitrogen 

gas. How many kmoles are in the bottle? 
 
 

Table A2 :   MO2 = 31.999  ;   MN2  = 28.013 
 

 nO2 = mO2 / MO2 = 
5

31.999 = 0.15625 kmol 

nO2 = mN2 / MN2 = 
7

28.013 = 0.24988 kmol 

 
ntot = nO2 + nN2  = 0.15625 + 0.24988 = 0.406 kmol 
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Force and Energy 
 
 
2.27 
 The “standard” acceleration (at sea level and 45° latitude) due to gravity is 

9.80665 m/s2. What is the force needed to hold a mass of 2 kg at rest in this 
gravitational field ? How much mass can a force of 1 N support ? 

 
 Solution: 

  
 ma = 0 = ∑ F = F - mg 

F  = mg = 2 × 9.80665 = 19.613 N 
F = mg   =>     
m = F/g = 1 / 9.80665 = 0.102 kg m 

 

F 
 

g 
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2.28 
 A force of 125 N is applied to a mass of 12 kg in addition to the standard 

gravitation. If the direction of the force is vertical up find the acceleration of the 
mass. 

 
Solution: 
 
   Fup  = ma = F – mg 

   a = 
F – mg

m   = 
F
m – g  = 

125
12   – 9.807 

      = 0.61 ms-2  

 

F 
 

g 
 

x 
 

m 
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2.29 
 A model car rolls down an incline with a slope so the gravitational “pull” in the 

direction of motion is one third of the standard gravitational force (see Problem 
2.1). If the car has a mass of  0.45 kg find the acceleration. 

 
 Solution: 
 

  
 
ma =  ∑ F = mg / 3 
   a = mg / 3m = g/3 
      = 9.80665 / 3 = 3.27 m/s2 

 

g 
 

 
  This acceleration does not depend on the mass of the model car. 
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2.30 
 When you move up from the surface of the earth the gravitation is reduced as g = 

9.807 − 3.32  × 10-6 z, with z as the elevation in meters. How many percent is the 
weight of an airplane reduced when it cruises at 11 000 m? 

 
 Solution: 
 

go= 9.807 ms-2 

gH = 9.807 – 3.32 × 10-6 × 11 000 = 9.7705 ms-2 

Wo =  m go   ;   WH =  m gH    
 

WH/Wo  =  gH/go =  
9.7705
9.807  = 0.9963 

 
Reduction = 1 – 0.9963 = 0.0037        or  0.37% 
 
i.e. we can neglect that for most application 
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2.31 
 A car drives at 60 km/h and is brought to a full stop with constant deceleration in 

5 seconds. If the total car and driver mass is 1075 kg find the necessary force. 
 
 Solution: 
 

 Acceleration is the time rate of change of velocity. 

  a = 
dV
dt   = 

60 × 1000
3600 × 5   = 3.333 m/s2 

 ma = ∑ F ;  
 Fnet = ma = 1075 kg × 3.333 m/s2 = 3583 N 

 



   Sonntag, Borgnakke and van Wylen  

 
2.32 
 A car of mass 1775 kg travels with a velocity of 100 km/h. Find the kinetic 

energy. How high should it be lifted in the standard gravitational field to have a 
potential energy that equals the kinetic energy? 
  
Solution: 
 Standard kinetic energy of the mass is 

  KIN = ½ m V2 = ½ ×  1775 kg × 



100 × 1000

3600
2
 m2/s2 

   = ½ × 1775 × 27.778  Nm = 684 800 J 
   = 684.8 kJ 
 Standard potential energy is  
  POT = mgh 

  h = ½ m V2 / mg  = 
684 800

1775 × 9.807 = 39.3 m 
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2.33 
 A 1200-kg car moving at 20 km/h is accelerated at a constant rate of  4 m/s2 up to 

a speed of 75 km/h. What are the force and total time required? 
 
 Solution: 
 

  a = 
dV
dt  =  

∆V
∆t    =>   ∆t =  

∆V
a   =  

(75 − 20) 1000
3600 × 5   =  3.82 sec  

   
  F = ma = 1200 kg × 4 m/s2 = 4800 N 
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2.34 
 A steel plate of 950 kg accelerates from rest with 3 m/s2 for a period of 10s. What 

force is needed and what is the final velocity? 
 
 Solution: 
 
  Constant acceleration can be integrated to get velocity. 

 a = 
dV
dt    =>  ∫ dV = ∫ a dt    =>    ∆V = a ∆t  

    ∆V = a ∆t = 3 m/s2 × 10 s = 30 m/s   
   =>    V = 30 m/s  

 

    F = ma = 950 kg × 3 m/s2 = 2850 N 

F 
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2.35 
 A 15 kg steel container has 1.75 kilomoles of liquid propane inside. A force of 2 

kN now accelerates this system. What is the acceleration? 
 
 Solution: 
 
 The molecular weight for propane is  M = 44.094  from Table A.2. The force 

must accelerate both the container mass and the propane mass. 
 
 

 m = msteel + mpropane = 15 + (1.75 × 44.094) = 92.165 kg 
 
 ma = ∑ F     ⇒    a = ∑ F / m  

a = 
2000 N

92.165 kg = 21.7 m/s2 
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2.36 
 A bucket of concrete of total mass 200 kg is raised by a crane with an acceleration 

of 2 m/s2 relative to the ground at a location where the local gravitational 
acceleration is 9.5 m/s2. Find the required force. 

 
 

Solution: 
 

F = ma = Fup − mg 
 

Fup = ma + mg = 200 ( 2 + 9.5 ) = 2300 N 
 

 

g 
 

F 
 

up 
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2.37 
 On the moon the gravitational acceleration is approximately one-sixth that on the 

surface of the earth. A 5-kg mass is “weighed” with a beam balance on the 
surface on the moon. What is the expected reading? If this mass is weighed with a 
spring scale that reads correctly for standard gravity on earth (see Problem 2.1), 
what is the reading? 

 
  Solution: 
   Moon gravitation is:  g = gearth/6 
 
 

mm

�
�
�
�
�
�

m

 

 
 

 
 Beam Balance Reading is 5 kg Spring Balance Reading is in kg units 
 This is mass comparison  Force comparison length ∝ F ∝ g 

         Reading will be 
5
6 kg 
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Specific Volume 
 
 
2.38 
 A 5 m3 container is filled with 900 kg of granite (density 2400 kg/m3 ) and the 

rest of the volume is air with density 1.15 kg/m3. Find the mass of air and the 
overall (average) specific volume. 

 
 Solution: 

  mair = ρ V = ρair ( Vtot − 
mgranite

ρ  ) 

         = 1.15 [ 5 - 
900
2400 ] = 1.15  × 4.625 = 5.32 kg 

  v = 
V
m = 

5
900 + 5.32 = 0.005 52 m3/kg 

 
 Comment:  Because the air and the granite are not mixed or evenly distributed in 

the container the overall specific volume or density does not have much meaning. 
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2.39 
 A tank has two rooms separated by a membrane. Room A has 1 kg air and volume 

0.5 m3, room B has 0.75 m3 air with density 0.8 kg/m3. The membrane is broken 
and the air comes to a uniform state. Find the final density of the air. 

 
 Solution: 

 Density is mass per unit volume 
 m = mA + mB = mA + ρBVB = 1 + 0.8 × 0.75 = 1.6 kg 

 
 V = VA + VB = 0.5 + 0.75 = 1.25 m3 

ρ = 
m
V = 

1.6
1.25 = 1.28 kg/m3 

 

A B

cb  
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2.40 
 A 1 m3 container is filled with 400 kg of granite stone, 200 kg dry sand and 0.2 

m3 of liquid 25°C water. Use properties from tables A.3 and A.4. Find the 
average specific volume and density of the masses when you exclude air mass and 
volume. 

 
 Solution: 
 
 Specific volume and density are ratios of total mass and total volume. 

 mliq = Vliq/vliq = Vliq ρliq = 0.2 × 997 = 199.4 kg  

 mTOT  = mstone + msand + mliq = 400 + 200 + 199.4  = 799.4 kg 

  Vstone = mv = m/ρ = 400/ 2750 = 0.1455 m3 
 Vsand = mv = m/ρ = 200/ 1500 = 0.1333 m3 

VTOT = Vstone + Vsand + Vliq  

          = 0.1455 + 0.1333 + 0.2 = 0.4788 m3 
 

��������������������������������������������
��������������������������������������������
��������������������������������������������
��������������������������������������������
��������������������������������������������
��������������������������������������������

 
 

  v = VTOT / mTOT = 0.4788/799.4 = 0.000599 m3/kg 

  ρ = 1/v = mTOT/VTOT = 799.4/0.4788 = 1669.6 kg/m3 
 



   Sonntag, Borgnakke and van Wylen  

 
2.41 
 A 1 m3 container is filled with 400 kg of granite stone, 200 kg dry sand and 0.2 

m3 of liquid 25°C water. Use properties from tables A.3 and A.4 and use air 
density of 1.1 kg/m3. Find the average specific volume and density of the 1 m3 
volume. 

 
 Solution: 
  Specific volume and density are ratios of total mass and total volume. 
   

 Vstone = mv = m/ρ = 400/ 2750 = 0.1455 m3 

Vsand = mv = m/ρ = 200/ 1500 = 0.1333 m3 
Vair = VTOT − Vstone − Vsand − Vliq  

       = 1− 0.1455 − 0.1333 − 0.2 = 0.5212 m3 
 

��������������������������������������������
��������������������������������������������
��������������������������������������������
��������������������������������������������
��������������������������������������������

 
    
   mair = Vair/vair = Vair ρair = 0.5212 × 1.1 = 0.573 kg 
   mliq = Vliq/vliq = Vliq ρliq = 0.2 × 997 = 199.4 kg  
   mTOT  = mstone + msand + mliq + mair  
    = 400 + 200 + 199.4 + 0.573 ≈ 800 kg 
 
   v = VTOT / mTOT = 1/800 = 0.00125 m3/kg 

   ρ = 1/v = mTOT/VTOT = 800/1 = 800 kg/m3 
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2.42 
 One kilogram of diatomic oxygen (O2 molecular weight 32) is contained in a 500-

L tank. Find the specific volume on both a mass and mole basis (v and v ). 
 
 Solution: 
   From the definition of the specific volume 

   v = 
V
m = 

0.5
1  = 0.5 m3/kg 

   v  = 
V
n = 

V
m/M = M v = 32 × 0.5 = 16 m3/kmol  
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2.43 
 A 15-kg steel gas tank holds 300 L of liquid gasoline, having a density of 800 

kg/m3. If the system is decelerated with 6 m/s2 what is the needed force? 
  
 
 Solution: 

 
     m = mtank + mgasoline  

        = 15 kg + 0.3 m3 × 800 kg/m3  
        = 255 kg 

     F = ma = 255 kg × 6 m/s2  
        = 1530 N 
 

cb
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Pressure 
 
 
2.44 
 A hydraulic lift has a maximum fluid pressure of 500 kPa. What should the 

piston-cylinder diameter be so it can lift a mass of 850 kg? 
 
 Solution: 
 
 With the piston at rest the static force balance is 
 
   F↑ = P A = F↓ = mg 
    A = π r2 = π D2/4 

   PA = P π D2/4 = mg    ⇒ D2 = 
4mg
P π   

 

   D = 2
mg
Pπ  = 2

850 × 9.807
500 π × 1000 = 0.146 m 
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2.45 
 A piston/cylinder with cross sectional area of 0.01 m2 has a piston mass of 100 kg 

resting on the stops, as shown in Fig. P2.45. With an outside atmospheric pressure 
of 100 kPa, what should the water pressure be to lift the piston? 

 
 Solution: 
  The force acting down on the piston comes from gravitation and the 

outside atmospheric pressure acting over the top surface. 
 

 Force balance:  F↑ =  F↓ = PA = mpg + P0A 

 Now solve for P (divide by 1000 to convert to kPa for 2nd term) 
 
 

P =  P0 + 
mpg
A   = 100 kPa + 

100 × 9.80665
0.01 × 1000  

   = 100 kPa + 98.07 kPa = 198 kPa 
 Water

cb
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2.46 
 A vertical hydraulic cylinder has a 125-mm diameter piston with hydraulic fluid 

inside the cylinder and an ambient pressure of 1 bar. Assuming standard gravity, 
find the piston mass that will create a pressure inside of 1500 kPa. 

 
 Solution: 
 
 Force balance:    

           F↑ = PA = F↓ = P0A + mpg; 

P0 = 1 bar = 100 kPa 

  A = (π/4) D2 = (π/4)  × 0.1252 = 0.01227 m2 

cb

g
Po

 
  

 mp = (P − P0) 
A
g = ( 1500 − 100 ) × 1000 × 

0.01227
9.80665 = 1752 kg 
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2.47 
    A valve in a cylinder has a cross sectional area of 11 cm2 with a pressure of 735 

kPa inside the cylinder and 99 kPa outside. How large a force is needed to open 
the valve? 

 
 Fnet =  PinA – PoutA 

       = (735 – 99) kPa × 11 cm2 

       = 6996 kPa cm2 

       = 6996 × 
kN
 m2  × 10-4 m2 

       = 700 N 

cb

Pcyl
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2.48 
 A cannon-ball of 5 kg acts as a piston in a cylinder of 0.15 m diameter. As the 

gun-powder is burned a pressure of 7 MPa is created in the gas behind the ball. 
What is the acceleration of the ball if the cylinder (cannon) is pointing 
horizontally? 

 
 Solution: 
 
  The cannon ball has 101 kPa on the side facing the atmosphere. 

 ma = F = P1 × A − P0 × A = (P1 − P0 ) × A  
      = (7000 – 101) kPa ×  π ( 0.152 /4 ) m2 = 121.9 kN 
  
  
 

a =  
F
m  =  

121.9 kN
5 kg   = 24 380 m/s2 
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2.49 
 Repeat the previous problem for a cylinder (cannon) pointing 40 degrees up 

relative to the horizontal direction. 
 
 Solution: 
 

 ma = F = ( P1 - P0 ) A - mg sin 400   

 ma = (7000 - 101 ) kPa × π × ( 0.152 / 4 ) m2 - 5 × 9.807 × 0.6428 N 
       = 121.9 kN - 31.52 N = 121.87 kN 
  
 

a =  
F
m  =  

121.87 kN
5 kg   = 24 374 m/s2  
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2.50 
 A large exhaust fan in a laboratory room keeps the pressure inside at 10 cm water 

relative vacuum to the hallway. What is the net force on the door measuring 1.9 m 
by 1.1 m? 

 
 Solution: 
 
 The net force on the door is the difference between the forces on the two sides as 

the pressure times the area 
   
           F = Poutside A – Pinside A = ∆P × A  
   = 10 cm H2O × 1.9 m × 1.1 m  
   =  0.10 × 9.80638 kPa × 2.09 m2  
   =  2049 N 
  
 Table A.1: 1 m H2O is 9.80638 kPa and kPa is kN/m2. 
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2.51 
 What is the pressure at the bottom of a 5 m tall column of fluid with atmospheric 

pressure 101 kPa on the top surface if the fluid is 
  a) water at 20°C b) glycerine 25°C or c) light oil 
 
 Solution: 
 
 Table A.4: ρH2O = 997 kg/m3; ρGlyc = 1260 kg/m3; ρOil = 910  kg/m3 
 
   ∆P = ρgh   P = Ptop + ∆P 
 
 

 a)    ∆P = ρgh = 997× 9.807× 5 = 48887.9 Pa 
         P = 101 + 48.99 = 149.9 kPa 
 
b)    ∆P = ρgh = 1260× 9.807× 5 = 61784 Pa 
          P = 101 + 61.8 = 162.8 kPa 

 
c)    ∆P = ρgh = 910× 9.807× 5 = 44622 Pa 
          P = 101 + 44.6 = 145.6 kPa 
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2.52 
 The hydraulic lift in an auto-repair shop has a cylinder diameter of 0.2 m. To what 

pressure should the hydraulic fluid be pumped to lift 40 kg of piston/arms and 700 
kg of a car? 

 
 Solution: 
 Force acting on the mass by the gravitational field 

   F↓ = ma = mg = 740 × 9.80665 = 7256.9 N 
Force balance:  F↑ = ( P - P0 ) A = F↓  =>   P = P0 + F↓ / A 

   A = π D2 (1 / 4) = 0.031416 m2 
   P = 101 + 7256.9 / (0.031416 × 1000) = 332 kPa 
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2.53 
   A 2.5 m tall steel cylinder has a cross sectional area of 1.5 m2. At the bottom with 

a height of 0.5 m is liquid water on top of which is a 1 m high layer of gasoline. 
The gasoline surface is exposed to atmospheric air at 101 kPa. What is the highest 
pressure in the water?  

 
 Solution: 
 
 The pressure in the fluid goes up with the 

depth as 
P = Ptop + ∆P = Ptop + ρgh 

and since we have two fluid layers we get 
     P = Ptop + [(ρh)gasoline + (ρh)water]g 

The densities from Table A.4 are: 

Air

Water

1 m

0.5 m

Gasoline

 
  ρgasoline = 750 kg/m3;    ρwater = 997 kg/m3 

 

   P = 101 + [750 × 1 + 997 × 0.5] 
9.807
1000  = 113.2 kPa 



   Sonntag, Borgnakke and van Wylen  

 
2.54 
   At the beach, atmospheric pressure is 1025 mbar. You dive 15 m down in the 

ocean and you later climb a hill up to 250 m elevation. Assume the density of 
water is about 1000 kg/m3 and the density of air is 1.18 kg/m3. What pressure do 
you feel at each place? 

 
 Solution: 

  ∆P = ρgh 
           Pocean= P0 + ∆P = 1025 × 100 + 1000 × 9.81 × 15 

            = 2.4965 × 105 Pa = 250 kPa 
           Phill   = P0 - ∆P = 1025 × 100 - 1.18 × 9.81 × 250 

            = 0.99606 × 105 Pa = 99.61 kPa 
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2.55 
 A piston, mp= 5 kg, is fitted in a cylinder, A = 15 cm2, that contains a gas. The 

setup is in a centrifuge that creates an acceleration of 25 m/s2 in the direction of 
piston motion towards the gas. Assuming standard atmospheric pressure outside 
the cylinder, find the gas pressure. 

 
 Solution: 
 
 Force balance:         F↑ = F↓ = P0A + mpg = PA 

 

P =  P0 + 
mpg
A    

   = 101.325 + 
5 × 25

1000 × 0.0015  
kPa kg m/s2

Pa m2  

   = 184.7 kPa 
 

gasg

Po
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2.56 
 A steel tank of cross sectional area 3 m2 and 16 m tall weighs 10 000 kg and it is 

open at the top. We want to float it in the ocean so it sticks 10 m straight down by 
pouring concrete into the bottom of it. How much concrete should I put in?     

 
 Solution: 
 
 The force up on the tank is from the water 

pressure at the bottom times its area. The 
force down is the gravitation times mass and 
the atmospheric pressure.  
 
      F↑ =  PA = (ρoceangh + P0)A 

      F↓ = (mtank + mconcrete)g + P0A 
 
The force balance becomes 

Air
Ocean

Concrete

10 m

 

   
  F↑ = F↓ = (ρoceangh + P0)A = (mtank + mconcrete)g + P0A 
 
         Solve for the mass of concrete 
 
  mconcrete = (ρoceanhA - mtank) = 997 × 10 × 3 – 10 000 = 19 910 kg 
 
         Notice: The first term is the mass of the displaced ocean water. The net force 
           up is the weight (mg) of this mass called bouyancy, P0 cancel. 
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2.57 
 Liquid water with density ρ is filled on top of a thin piston in a cylinder with 

cross-sectional area A and total height H. Air is let in under the piston so it pushes 
up, spilling the water over the edge. Deduce the formula for the air pressure as a 
function of the piston elevation from the bottom, h. 

 
 Solution: 
     Force balance  
  

H  
h  

P  0  

 

Piston: F↑ = F↓ 
 
PA = P0A + mH2Og  

P = P0 + mH2Og/A 

 
 P  = P0 + (H − h)ρg 
 

 

h, V air  

P  

P  0  
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Manometers and Barometers 
 
 
2.58 
 The density of atmospheric air is about 1.15 kg/m3, which we assume is constant. 

How large an absolute pressure will a pilot see when flying 1500 m above ground 
level where the pressure is 101 kPa. 

 
 Solution: 
 

 Assume g and ρ are constant then the pressure difference to carry a 
column of height 1500 m is from Fig.2.10 
 

  ∆P = ρgh = 1.15 kg/m3 × 9.807 ms-2 × 1500 m  
        = 16 917 Pa = 16.9 kPa 
The pressure on top of the column of air is then 

  P = P0 – ∆P = 101 – 16.9 = 84.1 kPa 

 
  

 
 

 



   Sonntag, Borgnakke and van Wylen  

 
2.59 
 A differential pressure gauge mounted on a vessel shows 1.25 MPa and a local 

barometer gives atmospheric pressure as 0.96 bar. Find the absolute pressure 
inside the vessel. 

 
 Solution: 
  

 Convert all pressures to units of kPa. 
Pgauge = 1.25 MPa = 1250 kPa;    

P0 = 0.96 bar = 96 kPa 
 P = Pgauge + P0 = 1250 + 96 = 1346 kPa  
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2.60 
 Two vertical cylindrical storage tanks are full of liquid water, density 1000 

kg/m3, the top open to the atmoshere. One is 10 m tall, 2 m diameter, the other is 
2.5 m tall with diameter 4 m. What is the total force from the bottom of each tank 
to the water and what is the pressure at the bottom of each tank? 

 
 
 Solution:  

 VA = H × πD2 × (1 / 4) = 10 × π × 22 × ( 1 / 4) = 31.416 m3    

 VB = H × πD2 × (1 / 4) = 2.5 × π × 42 × ( 1 / 4) = 31.416 m3 
Tanks have the same volume, so same mass of water gives gravitational force 
 F = mg = ρ V g = 1000 × 31.416 × 9.80665 = 308 086 N 
this is the force the legs have to supply (assuming Po below the bottom). Tanks 
have total force up from bottom as  
 Ftot A = F + PoA = 308 086 + 101325 × 3.1416 = 626 408 N 

 Ftot B = F + PoA = 308 086 + 101325 × 12.5664 = 1 581 374 N 

 Pbot = Po + ρ H g  

 Pbot A = 101 + (1000 × 10 × 9.80665 / 1000) = 199 kPa 

 Pbot B = 101 + (1000 × 2.5 × 9.80665 / 1000) = 125.5 kPa 
 

 Po

Po

g
m

m

cb

A

B

 

 

 



   Sonntag, Borgnakke and van Wylen  

 
2.61 
 Blue manometer fluid of density 925 kg/m3 shows a column height difference of 

6 cm vacuum with one end attached to a pipe and the other open to P0 = 101 kPa. 
What is the absolute pressure in the pipe? 

 
 Solution: 

 
Since the manometer shows a vacuum we have 

PPIPE = P0 - ∆P  

∆P  = ρgh = 925 × 9.807 × 0.06  
       = 544.3 Pa = 0.544 kPa 
PPIPE = 101 – 0.544 = 100.46 kPa 

 
 cb

Po

Pipe
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2.62 
 The absolute pressure in a tank is 85 kPa and the local ambient absolute pressure 

is 97 kPa. If a U-tube with mercury, density 13550 kg/m3, is attached to the tank 
to measure the vacuum, what column height difference would it show? 

 
 Solution: 
 

 ∆P = P0 - Ptank = ρg H 

 H = ( P0 - Ptank ) / ρg = [(97 - 85 ) × 1000 ] / (13550 × 9.80665) 

     = 0.090 m = 90 mm 
 
  

H
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2.63 
   The pressure gauge on an air tank shows 75 kPa when the diver is 10 m down in 

the ocean. At what depth will the gauge pressure be zero? What does that mean? 
 
 

Ocean H20 pressure at 10 m depth is 
 

P H20 = Po  + ρLg = 101.3 + 
997 × 10 × 9.80665  

 1000  = 199 kPa 

 
Air Pressure (absolute) in tank  
 
Ptank = 199 + 75 = 274 kPa 
 
Tank Pressure (gauge) reads zero at H20 local pressure 
 

   
 

        274 = 101.3 +  
997 × 9.80665  

 1000  L 

 
L = 17.66 m 

 
At this depth you will have to suck the 
air in, it can no longer push itself 
through a valve. 
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2.64 
 A submarine maintains 101 kPa inside it and it dives 240 m down in the ocean 

having an average density of 1030 kg/m3. What is the pressure difference 
between the inside and the outside of the submarine hull? 

 
 Solution: 
 
  Assume the atmosphere over the ocean is at 101 kPa, then ∆P is from the 

240 m column water. 

 ∆P = ρLg = (1030 kg/m3 ×  240 m ×  9.807 m/s2) / 1000 = 2424 kPa 
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2.65 
 A barometer to measure absolute pressure shows a mercury column height of 725 

mm. The temperature is such that the density of the mercury is 13 550 kg/m3. 
Find the ambient pressure. 

 
 Solution: 
 

           Hg :  L  = 725 mm = 0.725 m;         ρ = 13 550 kg/m3 
           The external pressure P balances the column of height L so from Fig.2.10 

 P = ρ L g  = 13 550 kg/m3 × 9.80665 m/s2 × 0.725 m × 10-3 kPa/Pa 
    = 96.34 kPa 
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2.66 
 An absolute pressure gauge attached to a steel cylinder shows 135 kPa. We want 

to attach a manometer using liquid water a day that Patm = 101 kPa. How high a 
fluid level difference must we plan for? 

 
 Solution: 
 

 Since the manometer shows a pressure difference we have 
  ∆P = PCYL - Patm =  ρ L g 

  L  = ∆P / ρg = 
(135 – 101) kPa

997 kg m-3 × 10 × 9.807 m/s2 
1000 Pa

 kPa   

      = 3.467 m 
 

 

 

 
 

H 
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2.67 
 The difference in height between the columns of a manometer is 200 mm with a 

fluid of density 900 kg/m3. What is the pressure difference? What is the height 
difference if the same pressure difference is measured using mercury, density 
13600 kg/ m3, as manometer fluid? 

 
 Solution: 
 

 ∆P = ρ1gh1 = 900 kg/m3 × 9.807 m/s2 × 0.2 m = 1765.26 Pa = 1.77 kPa 

 hHg = ∆P/ (ρhg g) = (ρ1 gh1) / (ρhg g) = 
900

13600 × 0.2 = 0.0132 m= 13.2 mm 
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2.68 
 An exploration submarine should be able to go 4000 m down in the ocean. If the 

ocean density is 1020 kg/m3 what is the maximum pressure on the submarine 
hull? 

 
 Solution: 
   
  ∆P = ρLg = (1020 kg/m3 × 4000 m × 9.807 m/s2) / 1000  
        = 40 012 kPa ≈ 40 MPa 
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2.69 
 Assume we use a pressure gauge to measure the air pressure at street level and at 

the roof of a tall building. If the pressure difference can be determined with an 
accuracy of 1 mbar (0.001 bar) what uncertainty in the height estimate does that 
corresponds to? 

 
 Solution: 
 

 ρair = 1.169 kg/m3   from Table A.5 

 
∆P = 0.001 bar = 100 Pa 
 

L = 
∆P
ρg = 

100
1.169 × 9.807 = 8.72 m 
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2.70 
 A U-tube manometer filled with water, density 1000 kg/m3, shows a height 

difference of 25 cm. What is the gauge pressure? If the right branch is tilted to 
make an angle of 30° with the horizontal, as shown in Fig. P2.70, what should the 
length of the column in the tilted tube be relative to the U-tube? 

 
 Solution: 
 
  Same height in the two sides in the direction of g. 
 

  
 
 
 
 
 
 
 
                                              

∆P = F/A = mg/A = Vρg/A = hρg 
      = 0.25 × 1000 × 9.807 = 2452.5 Pa 
      = 2.45 kPa 
 
   h = H × sin 30° 
        ⇒ H = h/sin 30° = 2h = 50 cm 30o 

H 
h 
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2.71 
 A barometer measures 760 mmHg at street level and 735 mmHg on top of a 

building. How tall is the building if we assume air density of 1.15 kg/m3? 
  
 Solution: 
 
  ∆P = ρgH    

 

 H = ∆P/ρg = 
760 – 735

1.15 × 9.807 
mmHg

kg/m2s2 
133.32 Pa

mmHg  = 295 m 

 



   Sonntag, Borgnakke and van Wylen  

 
 
2.72 
 A piece of experimental apparatus is located where g = 9.5 m/s2 and the 

temperature is 5°C. An air flow inside the apparatus is determined by measuring 
the pressure drop across an orifice with a mercury manometer (see Problem 2.77 
for density) showing a height difference of 200 mm. What is the pressure drop in 
kPa? 

 
 Solution: 

  ∆P = ρgh ;         ρHg = 13600  kg/m3 

  ∆P = 13 600 kg/m3 × 9.5 m/s2 × 0.2 m = 25840 Pa = 25.84 kPa 
 

 

g

Air
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2.73 
 Two piston/cylinder arrangements, A and B, have their gas chambers connected 

by a pipe. Cross-sectional areas are AA = 75 cm2 and AB = 25 cm2 with the piston 
mass in A being mA = 25 kg. Outside pressure is 100 kPa and standard 
gravitation. Find the mass mB so that none of the pistons have to rest on the 
bottom. 

 
 Solution:  
 
 

P
Po

o

cb

 

Force balance for both pistons:       F↑ = F↓  
     A:     mPAg + P0AA = PAA 
     B:     mPBg + P0AB = PAB 
 
Same P in A and B gives no flow between them. 

              
mPAg
AA 

 + P0 = 
mPBg

AB
 + P0  

  
          => mPB = mPA AA/ AB  = 25 × 25/75 = 8.33 kg 
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2.74 
 Two hydraulic piston/cylinders are of same size and setup as in Problem 2.73, but 

with negligible piston masses. A single point force of 250 N presses down on 
piston A. Find the needed extra force on piston B so that none of the pistons have 
to move. 

 
Solution: 

 AA = 75 cm2 ;    

 AB = 25 cm2 

No motion in connecting pipe: PA = PB 

 

Forces on pistons balance 

Po

Po

cb

A B

FBFA

 

 
  PA = P0 +  FA / AA = PB = P0 + FB / AB  

  FB = FA × 
AB
AA

 = 250 × 
25
75 = 83.33 N 
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2.75 
 A pipe flowing light oil has a manometer attached as shown in Fig. P2.75. What 

is the absolute pressure in the pipe flow? 
 
 Solution: 

Table A.3:       ρoil  = 910  kg/m3;      ρwater  = 997 kg/m3 
 

PBOT = P0 + ρwater g Htot = P0 + 997 × 9.807 × 0.8 

           = Po + 7822 Pa                                                                     

  

PPIPE = PBOT – ρwater g H1 –  ρoil g H2 

                   = PBOT – 997 × 9.807 × 0.1 –  910 × 9.807 × 0.2 

                    = PBOT – 977.7 Pa  – 1784.9 Pa 

 

PPIPE  =  Po + (7822 – 977.7 – 1784.9) Pa 
           = Po + 5059.4 Pa = 101.325 + 5.06 = 106.4 kPa 

 
 



   Sonntag, Borgnakke and van Wylen  

 
2.76 
 Two cylinders are filled with liquid water, ρ = 1000 kg/m3, and connected by a 

line with a closed valve. A has 100 kg and B has 500 kg of water, their cross-
sectional areas are AA = 0.1 m2 and AB = 0.25 m2 and the height h is 1 m. Find 
the pressure on each side of the valve. The valve is opened and water flows to an 
equilibrium. Find the final pressure at the valve location. 

 
 Solution: 
   VA = vH2OmA = mA/ρ = 0.1 = AAhA      =>    hA = 1 m 

   VB = vH2OmB = mB/ρ = 0.5 = ABhB       =>    hB = 2 m 

  PVB = P0 + ρg(hB+H) = 101325 + 1000 × 9.81 × 3 = 130 755 Pa 

  PVA = P0 + ρghA = 101325 + 1000 × 9.81 × 1 = 111 135 Pa 
  Equilibrium: same height over valve in both 

  Vtot = VA + VB = h2AA + (h2 - H)AB ⇒ h2 = 
hAAA + (hB+H)AB

AA + AB
 = 2.43 m 

  PV2 = P0 + ρgh2 = 101.325 + (1000 × 9.81 × 2.43)/1000 = 125.2 kPa 
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Temperature 
 
 
2.77 
 The density of mercury changes approximately linearly with temperature as  

   ρHg = 13595 − 2.5 T  kg/ m3     T   in Celsius 
 so the same pressure difference will result in a manometer reading that is 

influenced by temperature. If a pressure difference of 100 kPa is measured in the 
summer at 35°C and in the winter at −15°C, what is the difference in column 
height between the two measurements? 

 
 Solution: 
 The manometer reading h relates to the pressure difference as 

    ∆P = ρ L g     ⇒      L = 
∆P
ρg  

  
 The manometer fluid density from the given formula gives 
   ρsu = 13595 − 2.5 × 35 = 13507.5 kg/m3   

   ρw = 13595 − 2.5 × (−15) = 13632.5  kg/m3 
 The two different heights that we will measure become 

  Lsu = 
100 × 103

13507.5 × 9.807 
kPa (Pa/kPa)
 (kg/m3) m/s2  = 0.7549 m 

  Lw = 
100 × 103

13632.5 × 9.807 
kPa (Pa/kPa)
 (kg/m3) m/s2 = 0.7480 m 

 
  ∆L = Lsu - Lw = 0.0069 m = 6.9 mm 
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2.78 
 A mercury thermometer measures temperature by measuring the volume 

expansion of a fixed mass of liquid Hg due to a change in the density, see 
problem 2.35.  Find the relative change (%) in volume for a change in 
temperature from 10°C to 20°C. 

 
 Solution: 
 

 From 10°C to 20°C 
 At 10°C : ρHg  = 13595 – 2.5 × 10 = 13570  kg/m3 
 At 20°C : ρHg  = 13595 – 2.5 × 20 = 13545  kg/m3 
 
The volume from the mass and density is: V = m/ρ 
  

 Relative Change = 
V20– V10

V10
  =  

(m/ρ20) - (m/ρ10)
m/ρ10

   

      = 
ρ10
ρ20

 – 1 = 
13570
13545 – 1 = 0.0018 (0.18%) 
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2.79 
 Using the freezing and boiling point temperatures for water in both Celsius and 

Fahrenheit scales, develop a conversion formula between the scales. Find the 
conversion formula between Kelvin and Rankine temperature scales. 

 
 Solution: 

  TFreezing = 0 oC = 32 F;        TBoiling = 100 oC = 212 F 

 ∆T = 100 oC = 180 F   ⇒  ToC = (TF - 32)/1.8   or    TF = 1.8 ToC + 32 

 For the absolute K & R scales both are zero at absolute zero. 
    TR = 1.8 × TK 
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2.80 
  The atmosphere becomes colder at higher elevation. As an average the standard 

atmospheric absolute temperature can be expressed as Tatm = 288 - 6.5 × 10−3 z, 
where z is the elevation in meters. How cold is it outside an airplane cruising at 
12 000 m expressed in Kelvin and in Celsius? 

 
 Solution: 
 
 For an elevation of  z = 12 000 m we get 
 
   Tatm = 288 - 6.5 × 10−3 z = 210 K 
 
 To express that in degrees Celsius we get 
   TC = T – 273.15 = −63.15oC 
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Review Problems 
 
 
2.81 
 Repeat problem 2.72 if the flow inside the apparatus is liquid water, ρ ≅ 1000 

kg/m3, instead of air. Find the pressure difference between the two holes flush 
with the bottom of the channel. You cannot neglect the two unequal water 
columns. 

 
 Solution:       Balance forces in the manometer: 
 
  P  P  1  . 2 

·  
h 

h  1 
2 

H 

 

(H - h2) - (H - h1) = ∆hHg = h1 - h2 
 
  P1A + ρH2Oh1gA + ρHg(H - h1)gA 

     = P2A + ρH2Oh2gA + ρHg(H - h2)gA 

    ⇒ P1 - P2 = ρH2O(h2 - h1)g + ρHg(h1 - h2)g 

      P1 - P2 = ρHg∆hHgg - ρH2O∆hHgg  = 13600 × 0.2 × 9.5 - 1000 × 0.2 × 9.5  

        = 25840 - 1900 = 23940 Pa = 23.94 kPa 
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2.82 
 The main waterline into a tall building has a pressure of 600 kPa at 5 m elevation 

below ground level. How much extra pressure does a pump need to add to ensure 
a water line pressure of 200 kPa at the top floor 150 m above ground? 

 
 Solution: 
  

 The pump exit pressure must balance the top pressure plus the column
 ∆P. The pump inlet pressure provides part of the absolute pressure. 
 Pafter pump = Ptop +  ∆P 

 ∆P = ρgh = 997 kg/m3 × 9.807 m/s2 × (150 + 5) m  
       = 1 515 525 Pa = 1516 kPa 
 Pafter pump = 200 + 1516 = 1716 kPa 

 ∆Ppump = 1716 – 600 = 1116 kPa 
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2.83 
 A 5-kg piston in a cylinder with diameter of 100 mm is loaded with a linear 

spring and the outside atmospheric pressure of 100 kPa. The spring exerts no 
force on the piston when it is at the bottom of the cylinder and for the state 
shown, the pressure is 400 kPa with volume 0.4 L. The valve is opened to let 
some air in, causing the piston to rise 2 cm. Find the new pressure. 

 
 Solution: 
 
  A linear spring has a force linear proportional to displacement. F = k x, so 

the equilibrium pressure then varies linearly with volume:  P = a + bV, with an 
intersect a and a slope b = dP/dV. Look at the balancing pressure at zero volume 
(V -> 0) when there is no spring force  F = PA = PoA + mpg  and the initial state. 
These two points determine the straight line shown in the P-V diagram. 

  Piston area = AP = (π/4) × 0.12 = 0.00785 m2 
 
 

400 

106.2 

2 

1 

0 0.4 

P 

V 

0.557 

2 P 

 

a = P0 + 
mpg
Ap

 = 100 kPa + 
5 × 9.80665

0.00785  Pa 

   = 106.2 kPa    intersect for zero volume. 
 
V2 = 0.4 + 0.00785 × 20 = 0.557 L 

P2 = P1 + 
dP
dV ∆V 

     = 400 + 
(400-106.2)

0.4 - 0  (0.557 - 0.4) 

     = 515.3 kPa 
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2.84 
 In the city water tower, water is pumped up to a level 25 m above ground in a 

pressurized tank with air at 125 kPa over the water surface. This is illustrated in 
Fig. P2.84. Assuming the water density is 1000 kg/m3 and standard gravity, find 
the pressure required to pump more water in at ground level. 

 
 Solution: 
   

∆P = ρ L g 

      = 1000 kg/m3 × 25 m × 9.807 m/s2 

      = 245 175 Pa = 245.2 kPa 
Pbottom = Ptop + ∆P 

              = 125 + 245.2 
              = 370 kPa 

       

cb
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2.85 
 Two cylinders are connected by a piston as shown in Fig. P2.85. Cylinder A is 

used as a hydraulic lift and pumped up to 500 kPa. The piston mass is 25 kg and 
there is standard gravity. What is the gas pressure in cylinder B? 

 
 Solution:   
  Force balance for the piston:      PBAB + mpg + P0(AA - AB) = PAAA 

  AA = (π/4)0.12 = 0.00785 m2;        AB = (π/4)0.0252 = 0.000 491 m2 

 PBAB = PAAA - mpg - P0(AA - AB) = 500× 0.00785 - (25 × 9.807/1000) 

              - 100 (0.00785 - 0.000 491) = 2.944 kN 
  PB = 2.944/0.000 491 = 5996 kPa = 6.0 MPa 

 
 

P

B

GAS

A Oil

Po

cb
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2.86 
 A dam retains a lake 6 m deep. To construct a gate in the dam we need to know 

the net horizontal force on a 5 m wide and 6 m tall port section that then replaces 
a 5 m section of the dam. Find the net horizontal force from the water on one side 
and air on the other side of the port.     

 
 Solution: 
  

 Pbot = P0 + ∆P 
 ∆P = ρgh = 997× 9.807× 6 = 58 665 Pa = 58.66 kPa 
  
 Neglect ∆P in air 
 Fnet = Fright – Fleft = Pavg A - P0A 
 Pavg = P0 + 0.5 ∆P Since a linear pressure variation with depth. 
 Fnet = (P0 + 0.5 ∆P)A - P0A = 0.5 ∆P A = 0.5 × 58.66 × 5 × 6 = 880 kN 

  
 

 

F  F left  righ t 
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